Skip to main content

Variable Speed Drives for Household Wind Energy Systems: Model Predictive Control of the Squirrel Cage Induction Generator with the Nine-Switch Converter

  • Chapter
  • First Online:
Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications

Abstract

Household power generation is a key part of smart grids. Among the power sources, variable speed wind turbines offer good power output with reliability. This chapter investigates the use of a squirrel cage induction generator in a variable speed drive system for the aforementioned application. In this downsized scale of power, reduced-count switch converters are interesting alternatives, for the sake of cost and size reduction. Therefore, this work applies the Nine-Switch Converter (NSC) in the integration of a squirrel cage induction generator onto the grid, with use of Finite Control Set Model Predictive Control (FCS-MPC), a powerful control theory, specially for power electronics. The converter is analyzed, with focus on its available voltage vectors, leading to the development of two structures of FCS-MPC: the concentrated approach and the decoupled approach. Furthermore, the decoupled approach enables the incorporation of duty cycle optimization into FCS-MPC for the NSC, which leads to improvements on the generator torque ripple and on the grid active power ripple. Additionally, considerations are made about the use of NSC wind energy system also for grid reactive power compensation. All the considerations are accompanied by simulated results of the considered system. As a result, the NSC is a feasible alternative for variable speed drive wind energy systems in household applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paulo RU, Guazzelli, et al (2022) Model predictive control with duty cycle optimization and virtual null vector for induction generator with six switch converter. IEEE J Emerg Sel Top Power Electron 1–1. DOI: https://doi.org/10.1109/JESTPE.2022.3169639

    Google Scholar 

  2. Guazzelli PRU (2018) Dual predictive current control of grid connected nine-switch converter applied to induction generator. In: 13th IEEE international conference industry applications (INDUSCON), pp 1038–1044

    Google Scholar 

  3. dos Santos STCA et al (2020) Grid-Connected variable speed driven squirrel-cage induction motor through a nine-switch AC/AC converter with leading power factor. In: IECON 2020 the 46th annual con ference of the IEEE industrial electronics society, pp 979–984. https://doi.org/10.1109/IECON43393.2020.9255355

  4. dos Santos STCA et al (2020) Reactive power compensation with nine-switch AC/AC converter and predictive current control applied to a variable speed driving induction motor. In: 2020 IEEE international conference on power electronics, drives and energy systems (PEDES), pp 1–6. https://doi.org/10.1109/PEDES49360.2020.9379373

  5. Hernandez M et al (2019) An analysis of performance by co-simulation of a wind PMSG using Z-source inverter and coded wireless power control for smart grid applications. IFAC J Syst Control 7:100035. ISSN: 2468-6018

    Google Scholar 

  6. Oliveira AL et al (2021) Co-simulation of an SRG wind turbine control and GPRS/EGPRS wireless standards in smart grids. IEEE/CAA J Autom Sinica 8(3):656–663

    Article  Google Scholar 

  7. Ansarian M, Sadeghzadeh SM, Fotuhi- Firuzabad M (2015) Optimum generation dispatching of distributed resources in smart grids. In: International transactions on electrical energy systems, vol 25.7, pp 1297–1318

    Google Scholar 

  8. Kakran S, Chanana S (2018) Smart operations of smart grids integrated with distributed generation: a review. In: Renewable and sustainable energy reviews, vol 81, pp 524-535. ISSN: 1364-0321

    Google Scholar 

  9. Hernandez CV, Pradas AV, Telsnig T (2011) Technology roadmap—smart grids, roadmap, international energy agency

    Google Scholar 

  10. Silva P et al (2019) Photovoltaic distributed generation—an international review on diffusion, support policies, and electricity sector regulatory adaptation. In: Renewable and sustainable energy reviews, vol 103, pp 30–39. ISSN: 1364-0321

    Google Scholar 

  11. Martin H et al (2022) Using rooftop photovoltaic generation to cover individual electric vehicle demand-a detailed case study. In: Renewable and sustainable energy reviews, vol 157, p 111969

    Google Scholar 

  12. Kaur H, Gupta S, Dhingra A (2022) Analysis of hybrid solar biomass power plant for generation of electric power. Mater Today: Proc 48:1134–1140

    Google Scholar 

  13. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. In: IEEE transactions on power. Electronics, vol 24.8 (Aug 2009), pp 1859–1875. ISSN: 0885-8993. https://doi.org/10.1109/TPEL.2009.2017082

  14. Ni K et al (2019) Highly reliable back-to-back power converter without Redundant Bridge Armfor doubly-fed induction generator-basedwind turbine. In: IEEE transactions on industry applications, pp 1–1. ISSN: 0093-9994. https://doi.org/10.1109/TIA.2019.2892925

  15. Trzynadlowski AM (2001) Control of induction motors. Academic Press

    Google Scholar 

  16. Manaullah et al (2012) Control and dynamic analysis of grid connectedvariable speed SCIG based wind energy conversion system. In: 2012 fourth in ternational conference on computational intelligence and communication networks, pp 588–593

    Google Scholar 

  17. Heydari M, Varjani AY, Mohamadian M (2011) A novel three-phase to three-phaseAC/ACconverter using six IGBTs. In: 2011 2nd international conference electric power and energy conversion systems (EPECS), Nov 2011, pp 1–7. https://doi.org/10.1109/EPECS.2011.6126808

  18. Kabir Y, Mohsin YM, Khan MM (2017) Automated power factor correction and energy monitoring system. In: 2017 second international conference on electrical, computer and communication technologies (ICECCT), pp 1–5

    Google Scholar 

  19. Kim G-T, Lipo TA (1996) VSI-PWM rectifier/inverter system with a reduced switch count. In: IEEE transactions on industry applications, vol 32.6, pp 1331–1337

    Google Scholar 

  20. Liu C et al (2009) A novel three-phase three-leg AC/AC converter using nine IGBTs. In: IEEE transactions on power electronics, vol 24.5, pp 1151–1160

    Google Scholar 

  21. Su J, Sun D (2017) Model predictive torque-vector control for fourswitch three-phase inverter-fed PMSM with capacitor voltage offset suppression. In: 2017 20th international conference on electrical machines and systems (ICEMS), pp 1–5

    Google Scholar 

  22. Takahashi I, Ohmori Y (1989) High-performance direct torque control of an induction motor. In: IEEE transactions on industry applications, vol 25.2, pp 257–264. ISSN: 00939994. https://doi.org/10.1109/28.25540

  23. Blaschke F (1971) A new method for the structural decoupling of AC induction machines. In: Conference record IFAC. Dusseldorf, Germany, pp 1–15. ISBN: 0-8058-0426-9

    Google Scholar 

  24. Noguchi T et al (1998) Direct power control of PWM converter without powersource voltage sensors. In: IEEE transactions on industry applications, vol 34.3, pp 473–479

    Google Scholar 

  25. Min B, Kwon B (1994) A unity power factor control for fully softwarecontrolled three-phase PWM rectifier with voltage link. In: Proceedings of IECON’94—20th annual conference of IEEE industrial electronics, vol 1, pp 555–560

    Google Scholar 

  26. Zhang Z et al (2019) Advanced control strategies for back-to-back power converter PMSG wind turbine systems. In: 2019 IEEE international symposium on predictive control of electrical drives and power electronics (PRECEDE), pp 1–6

    Google Scholar 

  27. Chatri C, Ouassaid M, Labbadi M (2021) A novel nonlinear sliding mode control scheme for PMSG based on wind energy conversion system. In: 2021 3rd international conference on control systems, mathematical modeling, automation and energy efficiency (SUMMA), pp 1108–1112

    Google Scholar 

  28. Duong L et al (2021) A modified deadbeat current controller for field oriented induction motor drivers. In: 2021 international conference on system science and engineering (ICSSE), pp 241–245

    Google Scholar 

  29. Dahri N, Ouassaid M, Yousfi D (2020) A FOC based robust fuzzy logic controller for a wind energy conversion system to overcome mechanical parameter uncertainties. In: 2020 IEEE international autumn meeting on power, electronics and computing (ROPEC), vol 4, pp 1–7

    Google Scholar 

  30. Rodriguez J et al (2007) Predictive current control of a voltage source inverter. In: IEEE transactions on industrial electronics, vol 54.1 (Feb 2007), pp 495–503. ISSN: 0278-0046. https://doi.org/10.1109/TIE.2006.888802

  31. Kouro S et al (2009) Model predictive control—asimple and powerful method to control power converters. In: IEEE transactions on industrial electronics, vol 56.6 (June 2009), pp 1826–1838. ISSN: 0278-0046. https://doi.org/10.1109/TIE.2008.2008349

  32. Vazquez S et al (2017) Model predictive control for power converters and drives: advances and trends. In: IEEE transactions on industrial electronics, vol 64.2 (Feb 2017), pp 935–947. ISSN: 0278-0046. https://doi.org/10.1109/TIE.2016.2625238

  33. Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives, 1st. Wiley, p 230. ISBN: 9781119963981

    Google Scholar 

  34. Zhang X et al (2018) Three vector complete model predictive control for threephase grid-connected inverters with LCL filter. In: 2018 13th IEEE conference industrial electronics and application (ICIEA), May 2018, pp 1470–1475. https://doi.org/10.1109/ICIEA.2018.8397941

  35. Gulbudak O, Santi E (2015) Model predictive control of dual-output nine-switch inverter with output filter. In: 2015 IEEE energy conversion congress expo IEEE, Sept 2015, pp 1582–1589. ISBN: 978-1-4673-7151-3. https://doi.org/10.1109/ECCE.2015.7309883

  36. Gao H, BinWu, David(Dewei)Xu (2017) Nine-switch ac/ac current source converter for microgrid application with model predictive control. In: IET power electronics, vol 10.13 (Oct 2017), pp 1759–1766. ISSN: 1755-4535. https://doi.org/10.1049/iet-pel.2017.0028

  37. Gulbudak O, Gokdag M (2018) Predictive dual-induction machine control using nine-switch inverter for multi-drive systems. In: 2018 IEEE 12th international conference on compatibility, power electronics and power engineering (CPE-POWERENG 2018), Apr 2018, pp 1–6

    Google Scholar 

  38. Sze SL, Yeh EH, MA R (2016) Finite control set model predictive control of nine-switch AC, DC, AC converter. In: IEEE international conference power energy, vol 3. IEEE, Nov 2016, pp 746–751. https://doi.org/10.1109/PECON.2016.7951658

  39. Jayan V, Ghias A (2019) Finite control set model predictive control of a nine switch dual output converter as a power quality conditioner. In: 2019 IEEE international conference on industrial technology (ICIT), Feb 2019, pp 1241–1246. https://doi.org/10.1109/ICIT.2019.8755152

  40. Gulbudak O, Gokdag M (2019) Asymmetrical multi-step direct model predictive control of nine-switch inverter for dual-output mode operation. IEEE Access 7:164720–164733

    Article  Google Scholar 

  41. Guazzelli PRU et al (2022) Decoupled predictive current control with duty-cycle optimization of a grid-tied nine-switch converter applied to an induction generator. In: IEEE transactions on power electronics, vol 37.3, pp 2778–2789. https://doi.org/10.1109/TPEL.2021.3115049

  42. IEC (2020) Electromagnetic compatibility (EMC)—Part 3. Standard. Geneva, CH: International Electrotechnical Commission, Jan 2020

    Google Scholar 

  43. ANEEL (2018) Procedimentos de Distribuiçãode Energia Elétrica no Sistema Elétrico Nacional-PRODIST: Módulo 8–Qualidade da Energia Elétrica. Agência Nacional de Energia Elétrica, Technical report Brasília, BR

    Google Scholar 

  44. Laouer M, Mekkaoui A, Younes M (2014) STATCOM and capacitor banks in a fixed-speedwind farm. Energy Procedia 50:882–892

    Article  Google Scholar 

  45. IEEE (2013) IEEE standard for shunt power capacitors. In: IEEE Std 18-2012 (Revision of IEEE Std 18-2002), pp 1–39. https://doi.org/10.1109/IEEESTD.2013.6466331

  46. Jena R, Swain S, Dash R (2021) Power flow simulation and voltage control in a SPV IEEE-5 bus system based on SVC. Mater Today: Proc 39:1934–1940

    Google Scholar 

  47. Farivar G et al (2019) Low-Capacitance StatCom with modular inductive filter. In: IEEE transactions on power electronics, vol 34.4, pp 3192–3203

    Google Scholar 

  48. Bao L, Fan L, Miao Z (2022) Wind farms in weak grids stability enhancement: SynCon or STATCOM? In: Electric power systems research, vol 202, p 107623

    Google Scholar 

  49. Ni K et al (2022) Power compensation-oriented SVM-DPC strategy for a fault- tolerant back-to-back power converter based DFIM shipboard propulsion system. In: IEEE transactions on industrial electronics, vol 69.9, pp 8716–8726

    Google Scholar 

  50. Costa P et al (2018) Single-Stage grid tied converter to improve solar PV array performance and power quality in microgeneration-consumers units. In: 2018 13th IEEE international conference on industry applications (INDUSCON), pp 722–729

    Google Scholar 

  51. Heydari M, Fatemi A, Varjani AY (2017) A reduced switch count three-phase AC/AC converter with six power switches: modeling, analysis, and control. IEEE J Emerg Sel Top Power Electron 5.4:1720–1738. ISSN: 2168-6777. https://doi.org/10.1109/JESTPE.2017.2720722

  52. Jibhakate CN, Chaudhari MA, Renge MM (2018) Reactive power compensation using induction motor driven by nine switch AC-DC-AC converter. In: IEEE Access, vol 6, pp 1312–1320. ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2017.2778291

  53. Vas P (1990) Vector control of AC machines. Monographs in electrical and electronic engineering. Clarendon Press, p 332. ISBN: 9780198593706

    Google Scholar 

  54. Golestan S et al (2014) Moving average filter based phase-locked loops: performance analysis and design guidelines. In: IEEE transactions on power electronics, vol 29.6, pp 2750–2763. 10.1109/TPEL. 2013.2273461

    Google Scholar 

  55. Golestan S, Guerrero JM, Vasquez JC (2017) Three-Phase PLLs: A Revi EW of recent advances. In: IEEE transactions on power. Electronics, vol 32.3 (Mar 2017), pp 1894–1907. ISSN: 0885-8993. https://doi.org/10.1109/TPEL.2016.2565642

  56. Bazzo WA, do Vale Pereira LT (2009) Introdução áEngenharia: Conceitos, Ferramentas e Comportamentos. 2nd ed. Florianópolis: Editora da UFSC, p 270. ISBN: 978-85.328.0455-6

    Google Scholar 

  57. Couto EB (1996) Identificação paramétrica de um motor de indução trifásico através de ensaio degrau em corrente contínua. Dissertação de Mestrado em Engenharia Elétrica. São Carlos, Brazil: Escola de Engenharia de São Carlos, Universidade de São Paulo, p 88

    Google Scholar 

  58. Rolim LGB, da Costa DR, Aredes M (2006) Analysis and software implementation of a robust synchronizing PLL circuit based on the PQ theory. In: IEEE transactions on industrial electronics, vol 53.6 (Dec 2006), pp 1919–1926. ISSN: 0278-0046. https://doi.org/10.1109/TIE.2006.885483

  59. Zhang Y, Yang H (2014) Model predictive torque control of induction motor drives with optimal duty cycle control. In: IEEE transactions on power. Electronics, vol 29.12 (Dec 2014), pp 6593–6603. ISSN: 0885-8993. https://doi.org/10.1109/TPEL.2014.2302838

  60. Guazzelli PRU (2021) Controle preditivo de estados finitos de gerador de indução gaiola de esquilo com conversor compartilhado de nove chaves. Tese de Doutorado. PhD thesis. São Carlos: Escola de Engenharia de São Carlos, Universidade de São Paulo, Apr 2021

    Google Scholar 

  61. Santos S (2021) Operação de motor de indução trifáasico conectado á rede por meio de um conversor de nove chaves com fator de potêencia adiantado. MA thesis. São Carlos: Escola de Engenharia de São Carlos, Universidade de São Paulo, Feb 2021

    Google Scholar 

  62. Anaya-Lara O et al (2009) Wind energy generation: modelling and control. 1st ed. Wiley, Chichester, p 288. ISBN: 978-0-470-71433-1

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Pró-Reitoria de Pesquisa da USP, the Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—under Finance Code 001, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Ubaldo Guazzelli .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 4.

Table 4 System and control parameters for the simulation results

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guazzelli, P.R.U., dos Santos, S.T.C.A., de Aguiar, M.L. (2024). Variable Speed Drives for Household Wind Energy Systems: Model Predictive Control of the Squirrel Cage Induction Generator with the Nine-Switch Converter. In: Sguarezi Filho, A.J., Jacomini, R.V., Capovilla, C.E., Casella, I.R.S. (eds) Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37909-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37909-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37908-6

  • Online ISBN: 978-3-031-37909-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics