Skip to main content

Abstract

Electricity remains a key element for world development, and the increase in the demand for electrical energy in the industrial, commercial and residential sectors, the predicted exhaustion of fossil fuel reserves (e.g. oil, coal), the environmental risks of nuclear energy, the effects of global warming in addition to other environmental issues makes it necessary to develop alternative/renewable and non-conventional sources for the electrical energy generation. Electricity generation, based on renewable non-conventional sources, can play an important role in global energy security and contribute to the reduction of greenhouse gas emissions. The use of these renewable energies can help to reduce energy consumption based on fossil fuel, which is the biggest source of CO\(_{2}\) emissions. Some of these alternative sources, e.g. wind, and photovoltaic, suffer from seasonality and intermittency, which represents a challenge to guarantee the adequate quality and dispatchability of the source. This limitation can be reduced and/or eliminated with the use of an Energy Storage System (ESS), allowing the energy system to be managed optimally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faisal M et al (2018) Review of energy storage system technologies in microgrid applications: issues and challenges. IEEE Access 6:35143–35164

    Article  Google Scholar 

  2. Sandoval D, Goffin P, Leibundgut H (2017) How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side. In: Appl Energy 187:116–127. ISSN: 0306-2619. https://doi.org/10.1016/j.apenergy.2016.11.026

  3. Sioshansi R et al (2022) Energy-Storage modeling: state-of-the-art and future research directions. In: IEEE transactions on power systems, vol 37.2, 860–875. https://doi.org/10.1109/TPWRS.2021.3104768

  4. Yan B et al (2020) Markovian-based stochastic operation optimization of multiple distributed energy systems with renewables in a local energy community. In: Electric power systems research, vol 186, p 106364

    Google Scholar 

  5. Sun Y et al (2020) Overview of energy storage in renewable energy power fluctuation mitigation. CSEE J Power Energy Syst 6.1:160–173. https://doi.org/10.17775/CSEEJPES.2019.01950

  6. Kim S-K et al (2008) Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer. In: IEEE transactions on industrial electronics, vol 55.4, pp 1677–1688. https://doi.org/10.1109/TIE.2007.907662

  7. Hemmati R, Saboori H (2016) Emergence of hybrid energy storage systems in renewable energy and transport applications—a review. In: Renewable and sustainable energy reviews, vol 65, pp 11–23. ISSN: 1364-0321. https://doi.org/10.1016/j.rser.2016.06.029

  8. Zhang T et al (2020) Evaluation model and method on life-cycle comprehensive low-carbon benefits of large-scale energy storage system from the distribution network planning perspective. In: 2020 IEEE 4th conference on energy internet and energy system integration (EI2), pp 2174–2179. https://doi.org/10.1109/EI250167.2020.9347293

  9. Nishiya K, Hasegawa J, Koike (1982) Dynamic state estimation including anomaly detection and identification for power systems. In: IEE ProceedingsC (Generation, Transmission and Distribution), vol 129.5, pp 192–198. 10.1049/ip-c.0032. https://digital-library.theiet.org/content/journals/10.1049/ip-c.1982.0032

  10. Rahman MM et al (2020) Assessment of energy storage technologies: a review. In: Energy conversion and management, vol 223, p 113295. ISSN: 0196-8904. https://doi.org/10.1016/j.enconman.2020.113295

  11. Serra R et al (2019) From conventional to renewable natural gas: can we expect GHG savings in the near term? In: Biomass bioenergy, vol 131, p 105396

    Google Scholar 

  12. Byrne RH et al (2018) Energy management and optimization methods for grid energy storage systems. IEEE Access 6:13231–13260. https://doi.org/10.1109/ACCESS.2017.2741578

    Article  Google Scholar 

  13. Guney MS, Tepe Y (2017) Classification and assessment of energy storage systems. Renew Sustain Energy Rev 75:1187–1197. https://doi.org/10.1016/j.rser.2016.11.102

    Article  Google Scholar 

  14. Asgari F, Jolai F, Movahedisobhani F (2021) An integrated mathematical model of dynamic production and maintenance planning in pumpedstorage hydroelectricity. Ahead-of-print, J Model Manag Ahead-of-Print. https://doi.org/10.1108/JM2-10-2020-0264

    Book  Google Scholar 

  15. Saputro EA, Farid MM (2018) A novel approach of heat recovery system in compressed air energy storage (CAES). Energy conversion and management 178:217–225

    Article  Google Scholar 

  16. Krupke C et al (2017) Modeling and experimental study of a wind turbine system in hybrid connection with compressed air energy storage. In: IEEE transactions on energy conversion, vol 32.1, pp 137–145. https://doi.org/10.1109/TEC.2016.2594285

  17. Venkataramani G, Velraj R, Viswanathan K (2018) Harnessing free energy from nature for efficient operation of compressed air energy storage system and unlocking the potential of renewable power generation. In: Scientific reports, vol 8. https://doi.org/10.1038/s41598-018-28025-5

  18. Wicki S, Hansen EG (2017) Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage. J Clean Product 162:1118–1134. https://doi.org/10.1016/j.jclepro.2017.05.132

    Article  Google Scholar 

  19. Olabi AG et al (2021) Critical review of flywheel energy storage system. In: Energies, vol 14.8, p 2159. https://doi.org/10.3390/en14082159

  20. Kiran AR, Anil G, Venkatesh B (2011) Simplified power converter for integrated traction energy storage. IEEE Trans Veh Technol 60(4):1374–1383

    Article  Google Scholar 

  21. Wagner RC, Boyle DR (2002) Commercialization of flywheel energy storage technology on the international space station. Syst Eng 20015:146–150

    Google Scholar 

  22. Kondoh J et al (2018) Energy characteristics of a fixed-speed flywheel energy storage system with direct grid-connection. In: Energy, vol 165, pp 701–708. ISSN: 0360-5442. https://doi.org/10.1016/j.energy.2018.09.197

  23. Mahdavi MS, Gharehpetian GB, Moghaddam HA (2021) Enhanced frequency control method for microgrid-connected flywheel energy storage system. IEEE Syst J 15(3):4503–4513. https://doi.org/10.1109/JSYST.2020.3010029

    Article  Google Scholar 

  24. Sharma P, Bhatti TS (2010) A review on electrochemical doublelayer capacitors. In: Energy conversion and management, vol 51.12, pp 2901–2912. https://doi.org/10.1016/j.enconman.2010.07.031. https://www.sciencedirect.com/science/article/pii/S0196890410002591

  25. Chen H et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312. https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  Google Scholar 

  26. Berrueta A et al (2019) Supercapacitors: electrical characteristics, modeling, applications, and future trends. IEEE Access 7:50869–50896. https://doi.org/10.1109/ACCESS.2019.2908558

    Article  Google Scholar 

  27. Kleinberg M et al (2014) Energy storage valuation under different storage forms and functions in transmission and distribution applications. In: Proceedings of the IEEE, vol 102.7, pp 1073–1083. https://doi.org/10.1109/JPROC.2014.2324995

  28. Muzaffar A et al (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sustain Energy Rev 101:123–145. https://doi.org/10.1016/j.rser.2018.10.026

    Article  Google Scholar 

  29. Naseri F et al (2022) Supercapacitor management system: a comprehensive review of modeling, estimation, balancing, and protection techniques. In: Renewable and sustainable energy reviews, Nov 2021, vol 155, p 111913. https://doi.org/10.1016/j.rser.2021.111913

  30. Sarbu I, Sebarchievici C (2018) A comprehensive review of thermal energy storage. In: Sustainability, vol 10.1, p 191. https://doi.org/10.3390/su10010191

  31. Dincer I, Rosen MA (2011) Thermal energy storage: systems and applications. Wiley, Chichester, UK

    Google Scholar 

  32. Zhou D, Zhao C, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605

    Article  Google Scholar 

  33. Alva G, Lin Y, Fang G (2018) An overview of thermal energy storage systems. In: Energy, vol 144, pp 341–378. ISSN: 0360-5442. https://doi.org/10.1016/j.energy.2017.12.037

  34. Socaciu L (2012) Thermal energy storage: an overview. Appl Math Mech 55:785–793

    Google Scholar 

  35. Keiner D et al (2019) Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Solar Energy 185:406–423

    Article  Google Scholar 

  36. Zhang H et al (2016) Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci 53:1–40. https://doi.org/10.1016/j.pecs.2015.10.003

    Article  Google Scholar 

  37. Aneke M, Wang M (2016) Energy storage technologies and real-life applications–a state of the art review. Appl Energy 179:350–377. https://doi.org/10.1016/j.apenergy.2016.06.097

    Article  Google Scholar 

  38. Luo X et al (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. https://doi.org/10.1016/j.apenergy.2014.09.081

    Article  Google Scholar 

  39. Marafon AC et al (2016) Use of biomass for power generation. In: Empresa Brasileira de Pesquisa Agropecuária. ISSN: 1678-1953

    Google Scholar 

  40. Mahlia TMI et al (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545. https://doi.org/10.1016/j.rser.2014.01.068

    Article  Google Scholar 

  41. Salameh ZM, Casacca MA, Lynch WA (1992) A mathematical model for lead-acid batteries. In: IEEE transactions on energy conversion, vol 7.1(Mar1992), pp 93–98. https://doi.org/10.1109/60.124547

  42. Zubi G et al (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308. https://doi.org/10.1016/j.rser.2018.03.046

    Article  Google Scholar 

  43. Khalid MR et al (2021) A comprehensive review on structural topologies, power levels, energy storage systems, and standards for electric vehicle charging stations and their impacts on grid. IEEE Access 9:128069–128094. https://doi.org/10.1109/ACCESS.2021.3112189

    Article  Google Scholar 

  44. Green A (1999) The characteristics of the nickel-cadmium battery for energy storage. Power Eng J 13(3):117–121. https://doi.org/10.1049/pe:19990303

    Article  Google Scholar 

  45. Boicea VA (2014) Energy storage technologies: the past and the present. In: Proceedings of the IEEE, vol 102.11, pp 1777–1794. https://doi.org/10.1109/JPROC.2014.2359545

  46. Ett G, Janolio G, Ett V et al (2002) Generating electricity from a fuel cell (in portuguese). In: Proceedings of the 4th energy meeting in rural areas. Campinas (SP)

    Google Scholar 

  47. Belmonte N et al (2017) Case studies of energy storage with fuel cells and batteries for stationary and mobile applications. In: Challenges, vol 8.1, p 9. https://doi.org/10.3390/challe8010009

  48. Couto TBA, Olden JD (2018) Global proliferation of small hydropower plants—science and policy. In: Frontiers in ecology and the environment, vol 16.2, pp 91–100. https://doi.org/10.1002/fee.1746

  49. Moreno SR, Kaviski E (2015) Daily scheduling of small hydro power plants dispatch with modified particles swarm optimization. In: Operational research, vol 35.1, pp 25–37. ISSN: 1678-5142. https://doi.org/10.1590/0101-7438.2015.035.01.0025

  50. Neto PBL, Saavedra OR, de Souza Ribeiro LA (2017) Analysis of a tidal power plant in the Estuary of Bacanga in Brazil taking into account the current conditions and constraints. In: IEEE transactions on sustainable energy, vol 8.3(July 2017), pp 1187–1194. https://doi.org/10.1109/TSTE.2017.2666719

  51. Kai LY et al (2021) Current status and possible future applications of marine current energy devices in Malaysia: a review. IEEE Access 9:86869–86888. https://doi.org/10.1109/ACCESS.2021.3088761

    Article  Google Scholar 

  52. Neto PBL et al (2011) Tidal energy exploitation for electricity generation: basic aspects and main trends (in Portuguese). In: Ingeniare. Revista Chilena de Ingeniería, vol 19.2(Aug 2011), pp 219–232

    Google Scholar 

  53. Hammons TJ (1993) Tidal power. In: Proceedings of the IEEE, vol 81.3(Mar 1993), pp 419–433. https://doi.org/10.1109/5.241486

  54. Cao Y et al (2021) Thermodynamic and economic assessments and multicriteria optimization of a novel poly-generation plant using geothermal energy and multi heat recovery technique. Int J Hydrog Energy 46.55:27851–27873. ISSN: 0360-3199. https://doi.org/10.1016/j.ijhydene.2021.06.063

  55. O’Sullivan M, Yeh A, Mannington W (2010) Renewability of geothermal resources. In: Geothermics, vol 39.4, pp 314–320. ISSN: 0375-6505. https://doi.org/10.1016/j.geothermics.2010.09.003

  56. Issa M, Abbas T, Ilinca A (2019) Biomass cogeneration technologies: a review. J Sustain Bioenergy Syst 10. https://doi.org/10.4236/jsbs.2020.101001

  57. Balat M, Ayar G (2005) Biomass energy in the world, use of biomass and potential trends. In: Energy Sour 27.10:931–940. https://doi.org/10.1080/00908310490449045

  58. Goetzberger A, Hebling C, Schock H-W (2003) Photovoltaic materials, history, status and outlook. In: Materials science and engineering: R: reports, vol 40.1, pp 1–46

    Google Scholar 

  59. Chaar LE, Lamont LA, Zein NE (2011) Review of photovoltaic technologies. In: Renewable and sustainable energy reviews, vol 15.5, pp 2165–2175

    Google Scholar 

  60. Solar Energy Technologies Office (2014) Crystalline Silicon Photovoltaics Research. https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research

  61. Powalla M, Bonnet D (2007) Thin-Film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. In: Advances in OptoElectronics, Sept 2007

    Google Scholar 

  62. Kuang Y et al (2013) Elongated nanostructures for radial junction solar cells. In: Reports on progress in physics, vol 76 Oct 2013), p 106502

    Google Scholar 

  63. Shannan NM, Yahaya NZ, Singh B (2014) Two diode model for parameters extraction of PV module. In: 2014 IEEE conference on energy conversion (CENCON), pp 260–264

    Google Scholar 

  64. Chin VJ, Salam Z, Ishaque K (2015) Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Applied energy 154:500–519

    Article  Google Scholar 

  65. Sauthier LF, Mathematical modeling of photovoltaic modules applied to distributed generation simulation environments. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5798.2019

  66. Adamo F et al (2011) Characterization and testing of a tool for photovoltaic panel modeling. In: IEEE transactions on instrumentation and measurement, vol 60.5, pp 1613–1622

    Google Scholar 

  67. Sumathi S, Jayanti S, Surekha P (2015) Solar PV and wind energy conversion systems. In: Green energy and technology. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-14941-7_4

  68. Grubb MJ, Meyer NI (1993) Wind energy: Resources, systems, and regional strategies

    Google Scholar 

  69. El-Sharkawi MA (2015) Wind energy: an introduction. CRC Press

    Google Scholar 

  70. Manandhar U et al (2019) Energy management and control for grid connected hybrid energy storage system under different operating modes. IEEE Trans Smart Grid 10(2):1626–1636

    Article  Google Scholar 

  71. Guan M (2022) Scheduled power control and autonomous energy control of grid-connected energy storage system (ESS) with virtual synchronous generator and primary frequency regulation capabilities. In: IEEE transactions on power systems, vol 37.2(Mar 2022), pp 942–954. https://doi.org/10.1109/TPWRS.2021.3105940

  72. Abomazid AM, El-Taweel NA, Farag HEZ (2022) Optimal energy management of hydrogen energy facility using integrated battery energy storage and solar photovoltaic systems. In: IEEE transactions on sustainable energy, vol 13.3(July 2022), pp 1457–1468. https://doi.org/10.1109/TSTE.2022.3161891

  73. Zhao H et al (2015) Review of energy storage system for wind power integration support. Appl Energy 137:545–553

    Article  Google Scholar 

  74. Silvera V et al (2018) Energy storage technologies towards brazilian electrical system. In: International conference on renewable energies and power quality (ICREPQ’18), Salamanca, Spain, Mar 2018

    Google Scholar 

  75. Chen H et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Salvadori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salvadori, F. et al. (2024). Energy Storage Applications in Renewable Energy Systems. In: Sguarezi Filho, A.J., Jacomini, R.V., Capovilla, C.E., Casella, I.R.S. (eds) Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37909-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37909-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37908-6

  • Online ISBN: 978-3-031-37909-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics