Skip to main content

Abstract

The Doubly Fed Induction Generator (DFIG) is widely employed in wind energy and this type of source is interesting to the smart grids environment. In this way, this chapter proposes an electromagnetic analysis using the finite element method for the DFIG based Wind Energy System, during its vector controlled operation by means of a proportional-integral (PI) controller. Moreover, a new design method for the PI controller gains obtention is presented, based on the fact there is no guarantee that the DFIG will operate in the unsaturated condition. Therefore, it can compromise the performance of the power control strategy. Simulation and experimental results endorse the analyzes during DFIG normal operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Almeida LAL et al (2016) An impulsive noise filter applied in wireless control of wind turbines. In: Renewable Energy, vol 86, pp 347–353. ISSN: 0960-1481. https://doi.org/10.1016/j.renene.2015.07.070. https://www.sciencedirect.com/science/article/pii/S0960148115301658

  2. Datta R, Ranganathan VT (2002) Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. In: IEEE transactions on energy conversion, vol 17.3, pp 414–421. https://doi.org/10.1109/TEC.2002.801993

  3. Hopfensperger B, Atkinson DJ, Lakin R (2000) Stator-flux-oriented control of a doubly-fed induction machine: with and without position encoder. In: Electric power applications, vol 147.4, pp 241–250. https://doi.org/10.1049/ipepa:20000442

  4. Shen B, Ooi BT (2005) Novel sensorless decoupled P-Q control of doubly-fed induction generator (DFIG) based on phase locking to Gamma-Delta frame. In: 2005 IEEE 36th power electronics specialists conference, pp 2670–2675. https://doi.org/10.1109/PESC.2005.1582010

  5. Tapia A et al (2003) Modeling and control of a wind turbine driven doubly fed induction generator. In: IEEE transactions on energy conversion, vol 18.2, pp 194–204. https://doi.org/10.1109/TEC.2003.811727

  6. Pena R et al (2008) Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. In: IEEE transactions on industrial electronics, vol 55.1, pp 330–339. https://doi.org/10.1109/TIE.2007.896299

  7. Jacomini VR (2008) Power flux control of doubly fed induction generator operating at sub-synchronous speeds. University of Campinhas - UNICAMP, Dissertaçao de Mestrado, Campinhas

    Google Scholar 

  8. Briz F, Degner MW, Lorenz RD (2000) Analysis and design of current regulators using complex vectors. In: IEEE transactions on industry applications, vol 36.3, pp 817–825. https://doi.org/10.1109/28.845057

  9. Marques J, Pinheiro H (2005) Dynamic behavior of the doubly-fed induction generator in stator fluxvectorreference frame. In: 2005 IEEE 36th power electronics specialists conference, pp 2104–2110. https://doi.org/10.1109/PESC.2005.1581923

  10. Poitiers F, Bouaouiche T, Machmoum M (2009) Advanced control of a doubly-fed induction generator for wind energy conversion. In: Electric power systems research, vol 79.7, pp 1085–1096. ISSN: 0378- 7796. https://doi.org/10.1016/j.epsr.2009.01.007. https://www.sciencedirect.com/science/article/pii/S0378779609000352

  11. Murari ALLF et al (2017) A Proposal of Project of PI controller gains used on the Control of doubly-fed induction generators. In: IEEE Latin America transactions, vol 15.2, pp 173–180. https://doi.org/10.1109/TLA.2017.7854609

  12. Flores V (2013) Ride-through fault capability improvement through novel control strategies applied for doubly-fed induction wind generators. PhD thesis. Belo Horizonte, MG: Federal University of Minas Gerais, Sept 2013

    Google Scholar 

  13. Solís-Chaves JS et al (2019) A long-range generalized predictive control algorithm for a DFIG based wind energy system. IEEE/CAA J Automatica Sinica 6.5:1209–1219. https://doi.org/10.1109/JAS.2019.1911699

  14. Rocha-Osorio CM et al (2019) Power control of a doubly fed induction wind generator employing a takagi-sugeno fuzzy logic controller. In: 2019 IEEE 15th Brazilian power electronics conference and 5th IEEE southern power electronics conference (COBEP/SPEC), pp 1–6. https://doi.org/10.1109/COBEP/SPEC44138.2019.9065821

  15. Rodrigues LL et al (2020) Predictive incremental vector control for DFIG with weighted-dynamic objective constraint-handling method-PSO weighting matrices design. In: IEEE Access 8:114112–114122. https://doi.org/10.1109/ACCESS.2020.3003285

  16. Filho AJS, Model predictive control for doubly-fed induction generators and three-phase power converters, vol 222. Elsevier. ISBN: 9780323909648. https://doi.org/10.1016/C2020-0-01024-8

  17. Prieto-Cerón CE et al (2022) A generalized predictive controller for a wind turbine providing frequency support for a microgrid. In: Energies. https://doi.org/10.3390/en15072562. http://doi.org/10.3390/en15072562

  18. Gomez L et al (2020) Combined control of DFIG-based wind turbine and battery energy storage system for frequency response in microgrids. In: Energies, vol 13.4, p 894

    Google Scholar 

  19. Strous T et al (2016) Saturation in brushless doubly-fed induction machines. English. In: 8th IET international conference on power electronics, Ma396 chines and drives (PEMD 2016). PEMD 2016 : 8th international conference on power electronics, PEMD 2016; conference date: 19 Apr 2016 Through 21 Apr 2016. IET, 2016, pp 1–7. ISBN: 978-1-78561-188-9. https://doi.org/10.1049/cp.2016.0274

  20. Wang F et al (2015) Model-Based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods. In: IEEE transactions on industrial informatics, vol 11.3 (June 2015), pp 671–681. ISSN: 1551-3203. https://doi.org/10.1109/TII.2015.2423154

  21. Seman S, Niiranen J, Arkkio A (2006) Ride-Through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance. In: IEEE transactions on power systems, vol 21.4, pp 1782–1789. https://doi.org/10.1109/TPWRS.2006.882471

  22. GWEC (2021) GlobalWind Report—Annual MarketUpdate 2021. Technical report Global Wind Energy Council

    Google Scholar 

  23. Ministério de Minas e Energia—MME. Balanço Energético Nacional—Relatório Síntese 2018. Secretaria de Planejamento e Desenvolvimento Energético (eds). Empresa de Pesquisa Energética - EPE. http://www.epe.gov.br

  24. Agência Nacional de Energia Elétrica - ANEEL. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - Módulo 8 - Qualidade da Energia Elétrica. Agência Nacional de Energia Elétrica (ANEEL), 2021

    Google Scholar 

  25. ANEEL. Capacidade de Geração do Brasil. Tech. rep. Disponível em: www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. [Acessado em 07.Abr.2022]. www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm

  26. ANEEL. Expansão da Oferta de Energia Elétrica - Acompanhamento das Centrais Geradoras Eólicas. Technical report Aug 2021. http://www.aneel.gov.br/

  27. Instituto Nacional de Metereologia - INMET (2021) BD Dados Históricos. Technical report, Aug 2021. http://www.inmet.gov.br/

  28. Leonhard W (1985) Control of electrical drives. Springer, Berlin, Heidelberg, New York, NY

    Book  Google Scholar 

  29. Abad G et al (2011) Doubly fed induction machine: modeling and control for wind energy generation. Wiley, New York, NY

    Book  Google Scholar 

  30. Quéval L, Ohsaki H (2012) Back-to-back converter design and control for synchronous generator-based wind turbines. In: 2012 international conference on renewable energy research and applications (ICRERA), pp 1–6. https://doi.org/10.1109/ICRERA.2012.6477300

  31. Aydin O et al (2005) Optimum controller design for a multilevel AC-DC converter system. In: Twentieth annual IEEE applied power electronics conference and exposition. APEC 2005, vol 3, pp 1660–1666. DOI: https://doi.org/10.1109/APEC.2005.1453262

    Google Scholar 

  32. Preitl S, Precup R-E (1999) An extension of tuning relations after symmetrical optimum method for PI and PID controllers. In: Automatica, vol 35.10, pp 1731–1736. ISSN: 0005-1098. https://doi.org/10.1016/S0005-1098(99)00091-6 . https://www.sciencedirect.com/science/article/pii/S0005109899000916

  33. Murari ALLF et al (2016) Una introducción al ajuste de parámetros de controladores PI utilizados en el control del generador de inducción con rotor bobinado. In: Revista Iberoamericana de Automática e Informática industrial, vol 13.1 (ene. 2016), pp 15–21. https://doi.org/10.1016/j.riai.2015.11.001. https://polipapers.upv.es/index.php/RIAI/article/view/9320

  34. Pelizari A, Chabu IE (2014) Finite element analysis of hybrid excitation axial flux machine for electric cars. en. J Microw Optoelectr Electromagn Appl 13(Dec 2014):223–239. ISSN: 2179-1074. http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742014000200010&nrm=iso

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Solís-Chaves .

Editor information

Editors and Affiliations

Appendix A: Doubly-Fed Induction Generator Parameters

Appendix A: Doubly-Fed Induction Generator Parameters

See Table 7.

Table 7 Data used in the tests

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murari, A.L.L.F., Solís-Chaves, J.S., Pelizari, A., Filho, A.J.S., da Silva, B.H.P., Monaro, R.M. (2024). Electromagnetic Analysis of a DFIG‘s Controlled Operation Using Finite Elements Method. In: Sguarezi Filho, A.J., Jacomini, R.V., Capovilla, C.E., Casella, I.R.S. (eds) Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37909-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37909-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37908-6

  • Online ISBN: 978-3-031-37909-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics