Skip to main content

Modulation of Different Signaling Pathways in Liver Cancer by Arsenic Trioxide

  • Chapter
  • First Online:
Arsenic Toxicity Remediation: Biotechnological Approaches

Abstract

The greatest health concern facing the globe today is still cancer. In order to defeat various malignancies, researchers are now racing to develop effective anticancer tactics to stop this global tidal wave of cancer in both its extremely early and advanced stages. However, very few specific treatments or medications have so far been proven to be effective. An old medication called arsenic trioxide (As2O3) has recently gained resurgence as a treatment for several cancers. Arsenic is generally recognized as a naturally hazardous material that can cause a wide range of harmful adverse reactions. Despite its present image as a poison, arsenic is one of the world’s oldest medicines and has been used for ages to treat conditions ranging from cancer to infections. Due to its treatable antitumor impact in acute promyelocyticleukaemia (APL) patients, it attracted a lot of attention from people worldwide. The anticancer medication most frequently used among the arsenicals is (ATO) arsenic trioxide. Numerous studies have been carried out to comprehend the molecular pathways through which ATO induces or facilitates the apoptotic signalling pathway in cancer cells. The treatment of Hepatocellular Carcinoma (HCC) and other cancers with novel, currently available arsenic-based therapeutics is discussed here. We also discussed the novel molecular mechanism that underlies the combined therapy’ induction of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaza Y, Kantarjian H, Garcia-Manero G et al (2017) Longterm outcome of acute promyelocyticleukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 129:1275–1283

    Article  CAS  Google Scholar 

  • Abou-Merhi R, Khoriaty R, Arnoult D, El Hajj H, Dbouk H, Munier S, El-Sabban ME, Hermine O, Gessain A, de Thé H, Mahieux R, Bazarbachi A (2007) PS-341 or a combination of arsenic trioxide and interferon-alpha inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia 21(8):1792–801. https://doi.org/10.1038/sj.leu.2404797.PMID: 17568816

  • Alimoghaddam K (2014) A review of arsenic trioxide and acute promyelocyticleukemia. Int J Hematol Oncol Stem Cell Res 8(3):44–54

    Google Scholar 

  • Altekruse SF, McGlynn KA, Reichman ME (2009) Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol: Official J Am Soc Clin Oncol 27(9):1485–1491. https://doi.org/10.1200/JCO.2008.20.7753

    Article  Google Scholar 

  • Antman KH (2001) Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 6:1–2

    Article  CAS  Google Scholar 

  • Bayat RM, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043. https://doi.org/10.18632/oncotarget.16723

  • Bazarbachi A, El-Sabban ME, Nasr R, Quignon F, Awaraji C, Kersual J, Dianoux L, Zermati Y, Haidar JH, Hermine O, de Thé H (1999) Arsenic trioxide and interferon-alpha synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood 93(1):278–83. PMID: 9864171

    Google Scholar 

  • Berenson JR, Boccia R, Siegel D et al (2006) Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: A prospective, multicenter, phase II, single-arm study. Br J Haematol 135:174–183

    Article  CAS  Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016

    Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

  • Byun JM, Jeong DH, Lee DS, Kim JR, Park SG, Kang MS et al (2013a) Tetraarsenic oxide and cisplatin induce apoptotic synergism in cervical cancer. Oncol Rep 29:1540–1546

    Article  CAS  Google Scholar 

  • Byun JM, Jeong DH, Lee DS, Kim JR, Park SG, Kang MS, Kim YN, Lee KB, Sung MS, Kim KT (2013b) Tetraarsenic oxide and cisplatin induce apoptotic synergism in cervical cancer. Oncol Rep 29(4):1540–1546. https://doi.org/10.3892/or.2013.2243. Epub 2013 Jan 18 PMID: 23338680

    Article  CAS  Google Scholar 

  • Cai X, Yu K, Zhang L, Li Y, Li Q, Yang Z, Wang W (2015) Synergistic inhibition of colon carcinoma cell growth by Hedgehog-Gli1 inhibitor arsenic trioxide and phosphoinositide 3-kinase inhibitor LY294002. OncoTargets Ther 8:877–883. https://doi.org/10.2147/OTT.S71034

    Article  Google Scholar 

  • Cang S, Iragavarapu C, Savooji J, Song Y, Liu D (2015) ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol 8:129

    Google Scholar 

  • Carr MI, Jones SN (2016) Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 5(6):707–724. https://doi.org/10.21037/tcr.2016.11.75

  • Chau D, Ng K, Chan TS, Cheng YY, Fong B, Tam S et al (2015) Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol 8:46

    Article  Google Scholar 

  • Chaudhary A, Bhardwaj SK, Khan A, Srivastava A, Sinha KK, Ali M, Haque R (2022) Combinatorial effect of arsenic and herbal compounds in telomerase-mediated apoptosis induction in liver cancer. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03430-0. Epub ahead of print. PMID: 36192614

  • Chen QY, Costa M (2018) PI3K/Akt/mTOR signaling pathway and the biphasic effect of arsenic in carcinogenesis. Mol Pharmacol 94(1):784–792. https://doi.org/10.1124/mol.118.112268

    Article  CAS  Google Scholar 

  • Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177(2):324–333. https://doi.org/10.11002/(SICI)1097-4652(199811)177:2

    Article  CAS  Google Scholar 

  • Chen NY, Ma WY, Huang C, Ding M, Dong Z (2000) Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol 19:297–305

    CAS  Google Scholar 

  • Chen C, Zhang Y, Wang Y, Huang D, Xi Y, Qi Y (2011) Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: role of Akt and nuclear factor-κB. Cancer Lett 301:75–84

    Article  Google Scholar 

  • Chen D, Chan R, Waxman S, Jing Y (2006) Buthioninesulfoximine enhancement of arsenic trioxide-induced apoptosis in leukemia and lymphoma cells is mediated via activation of c-Jun NH2-terminal kinase and up-regulation of death receptors. Cancer Res 66(23):11416–11423. https://doi.org/10.1158/0008-5472.CAN-06-0409. PMID: 17145888

  • Chiu HW, Lin JH, Chen YA, Ho SY, Wang YJ (2010) Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis. Autophagy 6(3):353–365

    Article  CAS  Google Scholar 

  • Chiu HW, Ho SY, Guo HR, Wang YJ (2009) Combination treatment with arsenic trioxide and irradiation enhances autophagic effects in U118-MG cells through increased mitotic arrest and regulation of PI3K/Akt and ERK1/2 signaling pathways. Autophagy 5(4):472–483. https://doi.org/10.4161/auto.5.4.7759. PMID: 19242099

  • Chou WC, Hawkins AL, Barrett JF, Griffin CA, Dang CV (2001) Arsenic inhibition of telomerase transcription leads to genetic instability. J Clin Investig 108(10):1541–1547. https://doi.org/10.1172/JCI14064

    Article  CAS  Google Scholar 

  • Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR (2012) Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 13(9):10697–10721. https://doi.org/10.3390/ijms130910697

    Article  CAS  Google Scholar 

  • Crissien AM, Frenette C (2014) Current management of hepatocellular carcinoma. Gastroenterol Hepatol 10(3):153–161

    Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  Google Scholar 

  • Davison K, Mann KK, Miller Jr WH (2002) Arsenic trioxide: mechanism of action. Semin Hematol 39(2):3–7

    Google Scholar 

  • de Thé H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10:775–783

    Article  Google Scholar 

  • Dembitz V, Lalic H, Ostojic A, Vrhovac R, Banfic H, Visnjic D (2015) The mechanism of synergistic effects of arsenic trioxide and rapamycin in acute myeloid leukemia cell lines lacking typical t(15;17) translocation. Int J Hematol 102:12–24

    Article  CAS  Google Scholar 

  • Ding X, Chi J, Yang X, Hao J, Liu C, Zhu C et al (2017) Cucurbitacin B synergistically enhances the apoptosis-inducing effect of arsenic trioxide by inhibiting STAT3 phosphorylation in lymphoma Ramos cells. Leuk Lymphoma 58:2439–2451

    Article  CAS  Google Scholar 

  • El Eit RM, Iskandarani AN, Saliba JL, Jabbour MN, Mahfouz RA, Bitar NM, Ayoubi HR, Zaatari GS, Mahon FX, De Thé HB, Bazarbachi AA, Nasr RR (2014) Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon alpha. Int J Cancer 134(4):988–996. https://doi.org/10.1002/ijc.28427. Epub 2013 Sep 10. PMID: 23934954

  • El Hajj H, Dassouki Z, Berthier C, Raffoux E, Ades L, Legrand O et al (2015a) Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 125:3447–3454

    Google Scholar 

  • El Hajj H, Dassouki Z, Berthier C, Raffoux E, Ades L, Legrand O, Hleihel R, Sahin U, Tawil N, Salameh A, Zibara K, Darwiche N, Mohty M, Dombret H, Fenaux P, de Thé H, Bazarbachi A (2015b) Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 125(22):3447–3454. https://doi.org/10.1182/blood-2014-11-612416. Epub 2015b Mar 23. PMID: 25800051

  • El-Sabban ME, Nasr R, Dbaibo G, Hermine O, Abboushi N, Quignon F, Ameisen JC, Bex F, de Thé H, Bazarbachi A (2000) Arsenic-interferon-alpha-triggered apoptosis in HTLV-I transformed cells is associated with tax down-regulation and reversal of NF-kappa B activation. Blood 96(8):2849–2855. PMID: 11023521

    Google Scholar 

  • Emadi A, Sadowska M, Carter-Cooper B, Bhatnagar V, van der Merwe I et al (2015) Perturbation of cellular oxidative state induced by dichloroacetate and arsenic trioxide for treatment of acute myeloid leukemia. Leuk Res 39:719–729

    Article  CAS  Google Scholar 

  • Fang Y, Zhang Z (2020) Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 25:44. https://doi.org/10.1186/s11658-020-00236-7

    Article  CAS  Google Scholar 

  • Felix K, Manna SK, Wise K, Barr J, Ramesh GT (2005) Low levels of arsenite activates nuclear factor-kappaB and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Toxicol 19(2):67–77. https://doi.org/10.1002/jbt.20062

    Article  CAS  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J Cancer 127(12):2893–2917. https://doi.org/10.1002/ijc.25516

  • Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Naghavi M et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3(4):524–548. https://doi.org/10.1001/jamaoncol.2016.5688

  • Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH (2001) Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98:805–913

    Article  CAS  Google Scholar 

  • Griffith OW (1982) Mechanism of action, metabolism, and toxicity of buthioninesulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257(22):13704–13712. PMID: 6128339

    Google Scholar 

  • Guilbert C, Annis MG, Dong Z, Siegel PM, Miller WH Jr, Mann KK (2013) Arsenic trioxide overcomes rapamycin-induced feedback activation of AKT and ERK signaling to enhance the anti-tumor effects in breast cancer. PLoS One 8:e85995

    Google Scholar 

  • Han YH, Kim SZ, Kim SH, Park WH (2008) Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthioninesulfoximine. Mol Cells 26(2):158–164 Epub 2008 Jul 3 PMID: 18596414

    CAS  Google Scholar 

  • Hayashi T, Hideshima T, Akiyama H, Richardson P, Schlossman RL, Chauhan D, Waxman S, Anderson KC (2002) Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 1(10):851–860

    Google Scholar 

  • Hu WC, Teo WH, Huang TF, Lee TC, Lo JF (2020) Combinatorial low dose arsenic trioxide and cisplatin exacerbates autophagy via AMPK/STAT3 signaling on targeting head and neck cancer initiating cells. Front Oncol 10:463. https://doi.org/10.3389/fonc.2020.00463

    Article  Google Scholar 

  • Huang A, Yue D, Liao D, Cheng L, Ma J, Wei Y et al (2016) SurvivinT34A increases the therapeutic efficacy of arsenic trioxide in mouse hepatocellular carcinoma models. Oncol Rep 36:3283–3290

    Article  CAS  Google Scholar 

  • Ishitsuka K, Ikeda R, Suzuki S, Ohno N, Utsunomiya A, Uozumi K, Hanada S, Arima T (1999) The inductive pathways of apoptosis and G1 phase accumulation by arsenic trioxide in an adult T-cell leukemia cell line, MT-1. Blood 94(Suppl. 1):263b

    Google Scholar 

  • Ishitsuka K, Hanada S, Uozumi K, Utsunomiya A, Arima T (2000) Arsenic trioxide and the growth of human T-cell leukemia virus type I infected T-cell lines. Leuk Lymphoma 37(5–6):649–655. https://doi.org/10.3109/10428190009058521

    Article  CAS  Google Scholar 

  • Jambrovics K, Uray IP, Keillor JW, Fésüs L, Balajthy Z (2020) Benefits of combined all-trans retinoic acid and arsenic trioxide treatment of acute promyelocyticleukemia cells and further enhancement by inhibition of atypically expressed transglutaminase 2. Cancers 12(3):648. https://doi.org/10.3390/cancers12030648

    Article  CAS  Google Scholar 

  • Ji H, Li Y, Jiang F, Wang X, Zhang J, Shen J, Yang X (2014) Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci 105(12):1541–1549. https://doi.org/10.1111/cas.12548

    Article  CAS  Google Scholar 

  • Jian Y, Gao W, Geng C, Zhou H, Leng Y, Li Y et al (2017) Arsenic trioxide potentiates sensitivity of multiple myeloma cells to lenalidomide by upregulating cereblon expression levels. Oncol Lett 14:3243–3248

    Article  Google Scholar 

  • Jiang TT, Brown SL, Kim JH (2004) Combined effect of arsenic trioxide and sulindacsulfide in A549 human lung cancer cells in vitro. J Exp Clin Cancer Res 23(2):259–262

    Google Scholar 

  • Jin HO, Yoon SI, Seo SK et al (2006) Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin. Biochem Pharmacol 72(10):1228–1236

    Article  CAS  Google Scholar 

  • Jing Y (2004) The PML-RARalpha fusion protein and targeted therapy for acute promyelocyticleukemia. Leuk Lymphoma 45(4):639–648

    Article  CAS  Google Scholar 

  • John L, Sauter E, Herlyn M, Litwin S, Adler-Storthz K (2000) Endogenous p53 gene status predicts the response of human squamous cell carcinomas to wild-type p53. Cancer Gene Ther 7(5):749–756. https://doi.org/10.1038/sj.cgt.7700166

  • Jung HJ, Chen Z, McCarty N (2012) Synergistic anticancer effects of arsenic trioxide with bortezomib in mantle cell lymphoma. Am J Hematol 87:1057–1064

    Article  CAS  Google Scholar 

  • Jung HJ, Chen Z, McCarty N (2002) Synergistic anticancer effects of arsenic trioxide with bortezomib in mantle cell lymphoma. Am J Hematol 87(12):1057–1064. https://doi.org/10.1002/ajh.23317. Epub 2012 Sep 11. PMID: 22965904; PMCID: PMC3894928

  • Kamps R, Brandão RD, Bosch BJ, Paulussen AD, Xanthoulea S, Blok MJ, Romano A (2017) Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci 18(2):308. https://doi.org/10.3390/ijms18020308

    Article  CAS  Google Scholar 

  • Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  Google Scholar 

  • Kang T, Ge M, Wang R et al (2019) Arsenic sulfide induces RAG1-dependent DNA damage for cell killing by inhibiting NFATc3 in gastric cancer cells. J Exp Clin Cancer Res 38:487. https://doi.org/10.1186/s13046-019-1471-x

    Article  CAS  Google Scholar 

  • Kang YH, Lee SJ (2008) Role of p38 MAPK and JNK in enhanced cervical cancer cell killing by the combination of arsenic trioxide and ionizing radiation. Oncol Rep 20(3):637–643. PMID: 18695917

    Google Scholar 

  • Kasukabe T, Okabe-Kado J, Kato N, Honma Y, Kumakura S (2015) Cotylenin A and arsenic trioxide cooperatively suppress cell proliferation and cell invasion activity in human breast cancer cells. Int J Oncol 46:841–848

    Article  CAS  Google Scholar 

  • Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926. https://doi.org/10.18632/oncotarget.14733

  • Kim EH, Yoon MJ, Kim SU, Kwon TK, Sohn S, Choi KS (2008) Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Res 68:266–275

    Article  CAS  Google Scholar 

  • Kim YW, Bae SM, Battogtokh G, Bang HJ, Ahn WS (2012) Synergistic anti-tumor effects of combination of photodynamic therapy and arsenic compound in cervical cancer cells: in vivo and in vitro studies. PLoS One 7:e38583

    Google Scholar 

  • Klauser E, Gülden M, Maser E, Seibert S, Seibert H (2014) Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: effects of genistein, quercetin and buthionine-sulfoximine. Food ChemToxicol 67:212–221. https://doi.org/10.1016/j.fct.2014.02.039. Epub 2014 Mar 12 PMID: 24632069

    Article  CAS  Google Scholar 

  • Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4(9–10):342–359. https://doi.org/10.1177/1947601913507951

    Article  CAS  Google Scholar 

  • Kryeziu K, Jungwirth U, Hoda MA et al (2013) Synergistic anticancer activity of arsenic trioxide with erlotinib is based on inhibition of EGFR-mediated DNA double-strand break repair. Mol Cancer Ther 12:1073–1084

    Article  CAS  Google Scholar 

  • Kumar P, Gao Q, Ning Y, Wang Z, Krebsbach PH, Polverini PJ (2008) Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol Cancer Ther 7(7):2060–2069. https://doi.org/10.1158/1535-7163.MCT-08-0287. PMID: 18645016

    Article  CAS  Google Scholar 

  • Kumar S, Brown A, Tchounwou PB (2018) Trisenox disrupts MDM2-DAXX-HAUSP complex and activates p53, cell cycle regulation and apoptosis in acute leukemia cells. Oncotarget 9(69):33138–33148. https://doi.org/10.18632/oncotarget.26025

    Article  Google Scholar 

  • Lallemand-Breitenbach V, de Thé H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5):a000661. https://doi.org/10.1101/cshperspect.a000661

    Article  CAS  Google Scholar 

  • Lam S, Li Y, Zheng C, Leung LL, Ho JC (2014) E2F1 downregulation by arsenic trioxide in lung adenocarcinoma. Int J Oncol 45:2033–2043. https://doi.org/10.3892/ijo.2014.2609

    Article  CAS  Google Scholar 

  • Lam SK, Leung LL, Li YY, Zheng CY, Ho JC (2016) Combination effects of arsenic trioxide and fibroblast growth factor receptor inhibitor in squamous cell lung carcinoma. Lung Cancer 101:111–119

    Article  Google Scholar 

  • Lang M, Wang X, Wang H et al (2016) Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma. Cancer Lett 378:87–96

    Article  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  Google Scholar 

  • Lew YS, Brown SL, Griffin RJ, Song CW, Kim JH (1999) Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res 59:6033–6037

    CAS  Google Scholar 

  • Li H, Zhu X, Zhang Y, Xiang J, Chen H (2009) Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction. J Exp Clin Cancer Res: CR 28(1):110. https://doi.org/10.1186/1756-9966-28-110

    Article  CAS  Google Scholar 

  • Li D, Wei Y, Xu S, Niu Q, Zhang M, Li S, Jing M (2018) A systematic review and meta-analysis of bidirectional effect of arsenic on ERK signaling pathway. Mol Med Rep 17(3):4422–4432. https://doi.org/10.3892/mmr.2018.8383

    Article  CAS  Google Scholar 

  • Lin LM, Li BX, Xiao JB, Lin DH, Yang BF (2005) Synergistic effect of all-trans-retinoic acid and arsenic trioxide on growth inhibition and apoptosis in human hepatoma, breast cancer, and lung cancer cells in vitro. World J Gastroenterol 11(36):5633–5637. https://doi.org/10.3748/wjg.v11.i36.5633

    Article  CAS  Google Scholar 

  • Liu H, Tao X, Ma F, Qiu J, Wu C, Wang M (2012a) Radiosensitizing effects of arsenic trioxide on MCF-7 human breast cancer cells exposed to 89 strontium chloride. Oncol Rep 28(5):1894–1902. https://doi.org/10.3892/or.2012.1979. PMID: 22922982

    Article  CAS  Google Scholar 

  • Liu N, Tai S, Ding B, Thor RK, Bhuta S, Sun Y et al (2012b) Arsenic trioxide synergizes with everolimus (Rad001) to induce cytotoxicity of ovarian cancer cells through increased autophagy and apoptosis. Endocr Relat Cancer 19:711–723

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Xiong X, Qi K, Zhang C, Fang J, Guo H (2016) Low dose of arsenic trioxide inhibits multidrug resistant-related P-glycoprotein expression in human neuroblastoma cell line. Int J Oncol 49:2319–2330. https://doi.org/10.3892/ijo.2016.3756

    Article  CAS  Google Scholar 

  • Liu XJ, Wang LN, Zhang ZH, Liang C, Li Y, Luo JS, Peng CJ, Zhang XL, Ke ZY, Huang LB, Tang YL, Luo XQ (2020) Arsenic trioxide induces autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD acute myeloid leukemia cells. J Cancer 11(12):3476–3482. https://doi.org/10.7150/jca.29751

    Article  CAS  Google Scholar 

  • Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocyticleukemia. N Engl J Med 369:111–121

    Article  CAS  Google Scholar 

  • Ma ZB, Xu HY, Jiang M, Yang YL, Liu LX, Li YH (2014) Arsenic trioxide induces apoptosis of human gastrointestinal cancer cells. World J Gastroenterol 20(18):5505–5510. https://doi.org/10.3748/wjg.v20.i18.5505

    Article  CAS  Google Scholar 

  • Malek NP et al (2014) The diagnosis and treatment of hepatocellular carcinoma. DeutschesArzteblatt Int 111(7):101–106. https://doi.org/10.3238/arztebl.2014.0101

    Article  Google Scholar 

  • McGlynn KA, Petrick JL, El-Serag HB (2021) Epidemiology of hepatocellular carcinoma. Hepatology (Baltimore, Md.) 73(Suppl 1):4–13. https://doi.org/10.1002/hep.31288

  • Menon MB, Dhamija S (2018) Beclin 1 phosphorylation—at the center of autophagy regulation. Front Cell Dev Biol 6:137. https://doi.org/10.3389/fcell.2018.00137

    Article  Google Scholar 

  • Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanism of action of arsenic trioxide. Cancer Res 62(14):3893–3903

    Google Scholar 

  • Muto A, Kizaki M, Kawamura C et al (2001) A novel differentiation-inducing therapy for acute promyelocyticleukemia with a combination of arsenic trioxide and GM-CSF. Leukemia 15:1176–1184

    Article  CAS  Google Scholar 

  • Nakaoka T, Ota A, Ono T, Karnan S, Konishi H, Furuhashi A, Ohmura Y, Yamada Y, Hosokawa Y, Kazaoka Y (2014) Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol (Dordr) 37(2):119–129. https://doi.org/10.1007/s13402-014-0167-7. Epub 2014 Mar 6. PMID: 24599717

  • Ong PS, Chan SY, Ho PC (2011) Differential augmentative effects of buthioninesulfoximine and ascorbic acid in As2O3-induced ovarian cancer cell death: oxidative stress-independent and -dependent cytotoxic potentiation. Int J Oncol 38:1731–1739

    CAS  Google Scholar 

  • Pace C, Dagda R, Angermann J (2017) Antioxidants protect against arsenic induced mitochondrial cardio-toxicity. Toxics 5(4):38. https://doi.org/10.3390/toxics5040038

    Article  CAS  Google Scholar 

  • Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M (2022) Arsenic in medicine: past, present and future. Biometals: Int J Role Metal Ions Biol Biochem Med 1–19. Advance online publication. https://doi.org/10.1007/s10534-022-00371-y

  • Percherancier Y, Germain-Desprez D, Galisson F, Mascle XH, Dianoux L, Estephan P, Chelbi-Alix MK, Aubry M (2009) Role of SUMO in RNF4-mediated promyelocyticleukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem 284(24):16595–16608. https://doi.org/10.1074/jbc.M109.006387

  • Porter AC, Fanger GR, Vaillancourt RR (1999) Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:7794–7802

    Article  CAS  Google Scholar 

  • Ravandi F, Estey E, Jones D et al (2009) Effective treatment of acute promyelocyticleukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumabozogamicin. J Clin Oncol 27:504–510

    Article  CAS  Google Scholar 

  • Rawla P, Sunkara T, Muralidharan P, Raj JP (2018) Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (poznan, Pol) 22(3):141–150. https://doi.org/10.5114/wo.2018.78941

    Article  CAS  Google Scholar 

  • Roboz GJ, Dias S, Lam G, Lane WJ, Soignet SL, Warrell RP, Rafii S (2000) Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96:1525–1530

    Article  CAS  Google Scholar 

  • Rogers CS, Yedjou CG, Sutton DJ, Tchounwou PB (2014) Vitamin D3 potentiates the antitumorigenic effects of arsenic trioxide in human leukemia (HL-60) cells. Exp Hematol Oncol 3:9

    Google Scholar 

  • Sadaf N, Kumar N, Ali M, Ali V, Bimal S, Haque R (2018) Arsenic trioxide induces apoptosis and inhibits the growth of human liver cancer cells. Life Sci 205:9–17. https://doi.org/10.1016/j.lfs.2018.05.006

    Article  CAS  Google Scholar 

  • Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792. https://doi.org/10.1021/cr300015c

    Article  CAS  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168. https://doi.org/10.1038/nrc1011

    Article  CAS  Google Scholar 

  • Sonneveld P (2017) Management of multiple myeloma in the relapsed/refractory patient. Hematology 2017(1):508–517. American Society of Hematology. Education Program. https://doi.org/10.1182/asheducation-2017.1.508

  • Stewart AK (2012) Novel therapeutics in multiple myeloma. Hematology 17(Suppl 1):S105–S108

    Article  CAS  Google Scholar 

  • Stoica A, Pentecost E, Martin MB (2000) Effects of arsenite on estrogen receptor-α expression and activity in MCF-7 breast cancer cells. Endocrinology 141:3595–3602

    Article  CAS  Google Scholar 

  • Sun XP, Zhang X, He C, Qiao H, Jiang X, Jiang H et al (2012) ABT-737 synergizes with arsenic trioxide to induce apoptosis of gastric carcinoma cells in vitro and in vivo. J Int Med Res 40:1251–1264

    Article  CAS  Google Scholar 

  • Tai S, Xu L, Xu M, Zhang L, Zhang Y, Zhang K, Zhang L, Liang C (2017) Combination of Arsenic trioxide and Everolimus (Rad001) synergistically induces both autophagy and apoptosis in prostate cancer cells. Oncotarget 8(7):11206–11218. https://doi.org/10.18632/oncotarget.14493

    Article  Google Scholar 

  • Takahashi S, Harigae H, Yokoyama H et al (2006) Synergistic effect of arsenic trioxide and flt3 inhibition on cells with flt3 internal tandem duplication. Int J Hematol 84:256–261

    Article  CAS  Google Scholar 

  • Tanaka Y, Komatsu T, Shigemi H, Yamauchi T, Fujii Y (2014) BIMEL is a key effector molecule in oxidative stress-mediated apoptosis in acute myeloid leukemia cells when combined with arsenic trioxide and buthioninesulfoximine. BMC Cancer 14:27. https://doi.org/10.1186/1471-2407-14-27

    Article  Google Scholar 

  • Tarkanyi I, Dudognon C, Hillion J et al (2005) Retinoid/arsenic combination therapy of promyelocyticleukemia: Induction of telomerase-dependent cell death. Leukemia 19:1806–1811

    Article  CAS  Google Scholar 

  • Telford WG, Fraker PJ (1997) Zinc reversibly inhibits steroid binding to murine glucocorticoid receptor. Biochem Biophys Res Commun 238:86–89

    Article  CAS  Google Scholar 

  • Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  CAS  Google Scholar 

  • Tunissiolli NM, Castanhole-Nunes M, Biselli-Chicote PM, Pavarino EC, da Silva RF, da Silva RC, Goloni-Bertollo EM (2017) Hepatocellular carcinoma: a comprehensive review of biomarkers, clinical aspects, and therapy. Asian Pac J Cancer Prev: APJCP 18(4):863–872. https://doi.org/10.22034/APJCP.2017.18.4.863

  • Wang W, Adachi M, Zhang R, Zhou J, Zhu D (2009) A novel combination therapy with arsenic trioxide and parthenolide against pancreatic cancer cells. Pancreas 38:e114–e123

    Article  CAS  Google Scholar 

  • Wang L, Min Z, Wang X, Hu M, Song D, Ren Z, Cheng Y, Wang Y (2018) Arsenic trioxide and sorafenib combination therapy for human hepatocellular carcinoma functions via up-regulation of TNF-related apoptosis-inducing ligand. Oncol Lett 16(3):3341–3350. https://doi.org/10.3892/ol.2018.8981

    Article  CAS  Google Scholar 

  • Wei LH, Lai KP, Chen CA, Cheng CH, Huang YJ, Chou CH, Kuo ML, Hsieh CY (2005) Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene 24(3):390-398. https://doi.org/10.1038/sj.onc.1208192. PMID: 15531921

  • Wen J, Feng Y, Huang W, Chen H, Liao B, Rice L et al (2010) Enhanced antimyeloma cytotoxicity by the combination of arsenic trioxide and bortezomib is further potentiated by p38 MAPK inhibition. Leuk Res 34:85–92

    Article  CAS  Google Scholar 

  • Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med 6(5):a026070. https://doi.org/10.1101/cshperspect.a026070

    Article  CAS  Google Scholar 

  • Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM (1999) Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277:L924–L931

    CAS  Google Scholar 

  • Xu W, Wang Y, Tong H, Qian W, Jin J (2014) Downregulation of hTERT: an important As2O3 induced mechanism of apoptosis in myelodysplastic syndrome. PLoS ONE 9(11):e113199. https://doi.org/10.1371/journal.pone.0113199

    Article  CAS  Google Scholar 

  • Ye Y, Xu X, Zhang M et al (2015) Low-dose arsenic trioxide combined with aclacinomycin a synergistically enhances the cytotoxic effect on human acute myelogenous leukemia cell lines by induction of apoptosis. Leuk Lymphoma 56:3159–3167

    Article  CAS  Google Scholar 

  • Yih LH, Lee T-C (2000) Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res 60:6346–6352

    CAS  Google Scholar 

  • Yu Y, Zhang D, Huang H et al (2014) NF-κB1 p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1. Oncogene 33:996–1005. https://doi.org/10.1038/onc.2013.8

  • Zannini L, Delia D, Buscemi G (2014) CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol 6(6):442–457

    Google Scholar 

  • Zhai B, Jiang X, He C et al (2015) Arsenic trioxide potentiates the anticancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumour Biol 36:2323–2334

    Article  CAS  Google Scholar 

  • Zhang T, Chen G, Wang Z et al (2001) Arsenic trioxide, a therapeutic agent for APL. Oncogene 20:7146–7153. https://doi.org/10.1038/sj.onc.1204762

    Article  CAS  Google Scholar 

  • Zhang W, Wang L, Fan Q et al (2011) Arsenic trioxide re-sensitizes ERα-negative breast cancer cells to endocrine therapy by restoring ERα expression in vitro and in vivo. Oncol Rep 26(3):621–628

    CAS  Google Scholar 

  • Zhang N, Wu Z-M, Mcgowan E, Shi J, Hong Z-B, Ding C-W, Xia P, Di W (2009) Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: therapeutic potential for ovarian cancer. Cancer Sci 100:2459–2464. https://doi.org/10.1111/j.1349-7006.2009.01340.x

  • Zhao LL, Liu YF, Peng LJ, Fei AM, Cui W, Miao SC et al (2015) Arsenic trioxide rewires mantle cell lymphoma response to bortezomib. Cancer Med 4:1754–1766

    Article  CAS  Google Scholar 

  • Zheng Y, Zhou M, Ye A, Li Q, Bai Y, Zhang Q (2010) The conformation change of Bcl-2 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in SGC7901 human gastric cancer cells. World J Surg Oncol 8:31. https://doi.org/10.1186/1477-7819-8-31

  • Zhong L, Xu F, Chen F (2018) Arsenic trioxide induces the apoptosis and decreases NF-κB expression in lymphoma cell lines. Oncol Lett 16(5):6267–6274. https://doi.org/10.3892/ol.2018.9424

    Article  CAS  Google Scholar 

  • Zhou GB, Zhang J, Wang ZY, Chen SJ, Chen Z (2007) Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos Trans Royal Soc Lond Ser B Biol Sci 362(1482):959–971. https://doi.org/10.1098/rstb.2007.2026

Download references

Acknowledgements

The work was supported by grant No. EMR/2017/004171 from DST-SERB (Science and Engineering Research Board) India.Council of Scientific and Industrial Research (CSIR-UGC) in the form of fellowship to the first author.

Competing Interests

The authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwanul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, A., Ashraf, G.M., Ahmad, M.M., Kumar, M., Haque, R. (2023). Modulation of Different Signaling Pathways in Liver Cancer by Arsenic Trioxide. In: Kumar, N., Kumar, S. (eds) Arsenic Toxicity Remediation: Biotechnological Approaches . Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-37561-3_4

Download citation

Publish with us

Policies and ethics