Skip to main content

Bioactive Compounds in Citrus Fruits: Extraction and Identification

  • Chapter
  • First Online:
Recent Advances in Citrus Fruits

Abstract

Citrus fruits are famous globally because of their pleasant taste and richness in biologically active compounds and nutrients. Citrus fruits confer several health benefits to mankind by strengthening the immune, cardiovascular, and digestive systems. Polyphenols, flavonoids, carotenoids, pectin and essential oils are some of the bioactive phytochemicals found abundantly in citrus fruits. The amount and type of bioactive compounds and their antioxidant capacity widely depend on the fruit, cultivar, or part of the fruit, climate, and growing environment. This chapter aims to highlight bioactive compounds found in citrus fruits and summarize potential extraction techniques that could be utilized to recover these bioactive phytochemicals. The advantage of green extraction methods over traditionally used methods and the influence of extraction parameters on the extract yield along with a summary of the analytical techniques are discussed in this chapter. This chapter bridges the gap between traditional knowledge and modern research on citrus bioactive compounds and green/non-traditional extraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K (2007) Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 104:1338–1344

    Article  CAS  Google Scholar 

  • Ahmed M, Ramachandraiah K, Jiang GH, Eun JB (2020) Effects of ultra-sonication and agitation on bioactive compounds and structure of amaranth extract. Foods 9:11–16

    Article  Google Scholar 

  • Al Ubeed HMS, Bhuyan DJ, Alsherbiny MA, BasuA VQV (2022) A comprehensive review on the techniques for extraction of bioactive compounds from medicinal cannabis. Molecules 27:604

    Article  PubMed  Google Scholar 

  • Albertini MV, Carcouet E, Pailly O, Gambotti C, Luro F, Berti L (2006) Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J Agric Food Chem 54:8335–8339

    Article  CAS  PubMed  Google Scholar 

  • Alupului A, Calinescu I, Lavric V (2012) Microwave extraction of active principles from medicinal plants. UPB Sci Bul Ser B 74:129–142

    CAS  Google Scholar 

  • Anticona M, Blesa J, Lopez-Malo D, Frigola A, Esteve MJ (2021) Effects of ultrasound-assisted extraction on physicochemical properties, bioactive compounds, and antioxidant capacity for the valorization of hybrid mandarin peels. Food Biosci 42:101185

    Article  CAS  Google Scholar 

  • Attard TM, Watterson B, Budarin VL, Clark JH, Hunt AJ (2014) Microwave assisted extraction as an important technology for valorising orange waste. New J Chem 38:2278–2283

    Article  CAS  Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  • Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Pro Process Intensif 50:1237–1243

    Article  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bartnick D, Mohler C, Houlihan M (2006) U.S. Patent Application No. 10/972,751

    Google Scholar 

  • Berk Z (2016) Chapter 1: Introduction: history, production, trade, and utilization. In: Berk Z (ed) Citrus fruit processing. Academic, San Diego, pp 1–8

    Google Scholar 

  • Bermejo A, Llosa MJ, Cano A (2011) Analysis of bioactive compounds in seven citrus cultivars. Food Sci Tech Int 17:55–62

    Article  CAS  Google Scholar 

  • Boonkird S, Phisalaphong C, Phisalaphong M (2008) Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab-and pilot-plant scale. Ultra Sonochem 15:1075–1079

    Article  CAS  Google Scholar 

  • Boukroufa M, Boutekedjiret C, Chemat F (2017) Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour Eff Technol 3:252–262

    Google Scholar 

  • Bustamante J, van Stempvoort S, Garcia-Gallarreta M, Houghton JA, Briers HK, Budarin VL, Clark JH (2016) Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. J Clean Prod 137:598–605

    Article  CAS  Google Scholar 

  • Cano A, Alcaraz O, Acosta M, Arnao MB (2002) On-line antioxidant activity determination: comparison of hydrophilic and lipophilic antioxidant activity using the ABTS•+ assay. Redox Rep 7:103–109

    Article  CAS  PubMed  Google Scholar 

  • Casquete R, Castro SM, Villalobos MC, Serradilla MJ, Queirós RP, Saraiva JA, ... Teixeira P (2014) High pressure extraction of phenolic compounds from citrus peels. High Pres Res 34(4):447–451

    Google Scholar 

  • Chemat F, Tomao V, Virot M (2008) Ultrasound-assisted extraction in food analysis. In: Handbook of food analysis instruments, pp 85–103

    Google Scholar 

  • Ciriminna R, Lomeli-Rodriguez M, Cara PD, Lopez-Sanchez JA, Pagliaro M (2014) Limonene: a versatile chemical of the bioeconomy. Chem Comm 50:15288–15296

    Article  CAS  PubMed  Google Scholar 

  • Concha J, Soto C, Chamy R, Zuniga ME (2004) Enzymatic pretreatment on rose-hip oil extraction: hydrolysis and pressing conditions. J Am Oil Chem Soc 81:549–552

    Article  CAS  Google Scholar 

  • Curk F, Ancillo G, Garcia-Lor A, Luro F, Perrier X, Jacquemoud-Collet JP, Navarro L, Ollitrault P (2014) Next generation haplotyping to decipher nuclear genomic interspecific admixture in citrusspecies: analysis of chromosome 2. BMC Genet 15:1–19

    Article  Google Scholar 

  • Czech A, Malik A, Sosnowska B, Domaradzki P (2021) Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. Int J Food Sci 2021:6662259

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K (2013) Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Indust Crop Prod 50:77–87

    Google Scholar 

  • Dailey A, Vuong QV (2015) Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric 1:1115646

    Article  Google Scholar 

  • Deng M, Jia X, Dong L, Liu L, Huang F, Chi J et al (2022) Structural elucidation of flavonoids from Shatianyu (Citrus grandis L. Osbeck) pulp and screening of key antioxidant components. Food Chem 366:130605

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Reinoso B, Moure A, Domínguez H, Parajó JC (2006) Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agril Food Chem 54:2441–2469

    Article  Google Scholar 

  • Durand-Hulak M, Dugrand A, Duval T, Bidel LP, Jay-Allemand C, Froelicher Y, Bourgaud F, Fanciullino AL (2015) Mapping the genetic and tissular diversity of 64 phenolic compounds in citrus species using a UPLC–MS approach. Ann Bot 115:861–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Asbahani A, Miladi K, Badri W, Sala M, Addi EA, Casabianca H et al (2015) Essential oils: from extraction to encapsulation. Int J Pharm 483:220–243

    Article  CAS  PubMed  Google Scholar 

  • Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24:851–874

    Article  CAS  Google Scholar 

  • Fanciullino AL, Dhuique-Mayer C, Luro F, Casanova J, Morillon R, Ollitrault P (2006) Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. J Agric Food Chem 54:4397–4406

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2022) Food and agriculture data. Retrieved February 21, 2022, from https://www.fao.org/faostat/en/#data/QC

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265

    Article  CAS  PubMed  Google Scholar 

  • Gaur R, Sharma A, Khare SK, Gupta MN (2007) A novel process for extraction of edible oils: enzyme assisted three phase partitioning (EATPP). Bioresour Technol 98:696–699

    Article  CAS  PubMed  Google Scholar 

  • Ghafoor K, Choi YH, Jeon JY, Jo IH (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem 57:4988–4994

    Article  CAS  PubMed  Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Marine bioactive compounds. Springer, Boston, pp 55–98

    Chapter  Google Scholar 

  • Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    Article  CAS  PubMed  Google Scholar 

  • Inczédy J, Lengyel T, Ure AM, Gelencsér A, Hulanicki A (1998) Compendium of analytical nomenclature. Blackwell Science, Hoboken

    Google Scholar 

  • Inoue T, Tsubaki S, Ogawa K, Onishi K, Azuma JI (2010) Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chem 123(2):542–547

    Google Scholar 

  • Jongedijk E, Cankar K, Buchhaupt M, Schrader J, Bouwmeester H, Beekwilder J (2016) Biotechnological production of limonene in microorganisms. Appl Microbiol Biotechnol 100:2927–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung UJ, Lee MK, Park YB, Kang MA, Choi MS (2006) Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 38:1134–1145

    Article  CAS  PubMed  Google Scholar 

  • Karn A, Zhao C, Yang F, Cui J, GaoZ WM et al (2021) In-vivo biotransformation of citrus functional components and their effects on health. Crit Rev Food Sci Nutr 61:756–776

    Article  CAS  PubMed  Google Scholar 

  • Ke Z, Xu X, Nie C, Zhou Z (2015) Citrus flavonoids and human cancers. J Food Nutr Res 3:341–351

    Article  CAS  Google Scholar 

  • Khan MK, Dangles O (2014) A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 33:85–104

    Article  CAS  Google Scholar 

  • Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F (2010) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 119:851–858

    Article  CAS  Google Scholar 

  • Lakkakula NR, Lima M, Walker T (2004) Rice bran stabilization and rice bran oil extraction using ohmic heating. Bioresour Technol 92:157–161

    Article  CAS  PubMed  Google Scholar 

  • Latif S, Anwar F (2009) Physicochemical studies of hemp (Cannabis sativa) seed oil using enzyme-assisted cold-pressing. Eur J Lipid Sci Technol 111:1042–1048

    Article  CAS  Google Scholar 

  • Ledesma-Escobar CA, de Castro MDL (2014) Towards a comprehensive exploitation of citrus. Trends Food Sci Technol 39:63–75

    Article  CAS  Google Scholar 

  • Ledesma-Escobar CA, Priego-Capote F, Robles Olvera VJ, Luque de Castro MD (2018) Targeted analysis of the concentration changes of phenolic compounds in Persian lime (Citrus latifolia) during fruit growth. J Agric Food Chem 66:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Lee HS (2001) Characterization of carotenoids in juice of red navel orange (Cara Cara). J Agric Food Chem 49:2563–2568

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Qiao L, Gu H, Yang F, Yang L (2017) Development of Brönsted acidic ionic liquid based microwave assisted method for simultaneous extraction of pectin and naringin from pomelo peels. Sep Purif Technol 172:326–337

    Article  CAS  Google Scholar 

  • Lopresto CG, Meluso A, Di Sanzo G, Chakraborty S, Calabrò V (2019) Process-intensified waste valorization and environmentally friendly d-limonene extraction. Eur Mediterranean J Env Integr 4:1–12

    Article  Google Scholar 

  • Luengo E, Álvarez I, Raso J (2013) Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov Food Sci Emerg Technol 17:79–84

    Article  CAS  Google Scholar 

  • Luo T, Xu K, Luo Y, Chen J, Sheng L, Wang J, Han J, Zeng Y, Xu J, Chen J, Deng X (2015) Distinct carotenoid and flavonoid accumulation in a spontaneous mutant of ponkan (Citrus reticulata Blanco) results in yellowish fruit and enhanced postharvest resistance. J Agric Food Chem 63:8601–8614

    Article  CAS  PubMed  Google Scholar 

  • Lusas EW, Watkins LR (1988) Oilseeds: extrusion for solvent extraction. J Am Oil Chem Soc 65:1109–1114

    Article  Google Scholar 

  • Ma Y, Ye X, Hao Y, Xu G, Xu G, Liu D (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227–232

    Article  CAS  PubMed  Google Scholar 

  • Ma YQ, Chen JC, Liu DH, Ye XQ (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57–62

    Article  CAS  PubMed  Google Scholar 

  • Mamdouh MA, Monira AAEK (2004) The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia. Zeitschrift für Naturforschung C 59:726–733

    Article  Google Scholar 

  • Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr Polym 101:786–791

    Article  Google Scholar 

  • Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:S253–S260

    Article  CAS  Google Scholar 

  • Maugeri A, Cirmi S, Minciullo PL, Gangemi S, Calapai G, Mollace V, Navarra M (2019) Citrus fruits and inflammaging: a systematic review. Phytochem Rev 18:1025–1049

    Article  CAS  Google Scholar 

  • Merchant S, Sawaya MR (2005) The light reactions: a guide to recent acquisitions for the picture gallery. Plant Cell 17:648–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Multari S, Licciardello C, Caruso M, Martens S (2020) Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res Int 134:109228

    Article  CAS  PubMed  Google Scholar 

  • Nakao K, Murata K, Itoh K, Hanamoto Y, Masuda M, Moriyama K et al (2011) Anti-hyperuricemia effects of extracts of immature Citrus unshiu fruit. J Trad Med 28:10–15

    Google Scholar 

  • Negro V, Mancini G, Ruggeri B, Fino D (2016) Citrus waste as feedstock for bio-based products recovery: review on limonene case study and energy valorization. Bioresource Technol 214:806–815

    Article  CAS  Google Scholar 

  • Nieto A, Borrull F, Pocurull E, Marcé RM (2010) Pressurized liquid extraction: a useful technique to extract pharmaceuticals and personal-care products from sewage sludge. Trends Anal Chem 29:752–764

    Article  CAS  Google Scholar 

  • Niranjan K, Hanmoungjai P (2004) Enzyme-aided aquous extraction. In: Nutritionally enhanced edible oil processing. AOCS Publishing

    Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Zhang H, Li W, Yuan Z, Xie Z, Zhang H et al (2021) Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem 354:129499

    Article  CAS  PubMed  Google Scholar 

  • Putnik P, Barba FJ, Lorenzo JM, Gabrić D, Shpigelman A, Cravotto G, Bursać Kovačević D (2017) An integrated approach to mandarin processing: food safety and nutritional quality, consumer preference, and nutrient bioaccessibility. Compr Rev Food Sci Food Saf 16:1345–1358

    Article  CAS  PubMed  Google Scholar 

  • Quoc LPT, Huyen VTN, Hue LTN, Hue NTH, Thuan NHD, Tam NTT, Thuan NN, Duy TH (2015) Extraction of pectin from pomelo (Citrus maxima) peels with the assistance of microwave and tartaric acid. Int Food Res J 22:1637

    CAS  Google Scholar 

  • Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U et al (2014) Antioxidants and human diseases. Clin Chim Acta 436:332–347

    Article  CAS  PubMed  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  PubMed  Google Scholar 

  • Raspo MA, Vignola MB, Andreatta AE, Juliani HR (2020) Antioxidant and antimicrobial activities of citrus essential oils from Argentina and the United States. Food Biosci 36:100651

    Article  CAS  Google Scholar 

  • Rivas B, Torrado A, Torre P, Converti A, Domínguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzyme Microb Technol 19:402–420

    Article  CAS  Google Scholar 

  • Šafranko S, Ćorković I, Jerković I, Jakovljević M, Aladić K, Šubarić D, Jokić S (2021) Green extraction techniques for obtaining bioactive compounds from mandarin peel (Citrus unshiu var. Kuno): Phytochemical analysis and process optimization. Foods 10:1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini A, Panesar PS, Bera MB (2019) Comparative study on the extraction and quantification of polyphenols from citrus peels using maceration and ultrasonic technique. Curr Res Nutr Food Sci 7:678

    Article  Google Scholar 

  • Saini RK, Ranjit A, Sharma K, Prasad P, Shang X, Gowda KGM, Keum YS (2022) Bioactive compounds of citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 11:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Mahato N, Cho MH, Lee YR (2017) Converting citrus wastes into value-added products: economic and environmently friendly approaches. Nutrition 34:29–46

    Article  CAS  PubMed  Google Scholar 

  • Sihvonen M, Järvenpää E, Hietaniemi V, Huopalahti R (1999) Advances in supercritical carbon dioxide technologies. Trends Food Sci Technol 10:217–222

    Article  CAS  Google Scholar 

  • Smeriglio A, Cornara L, Denaro M, Barreca D, Burlando B, Xiao J, Trombetta D (2019) Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: microscopic observations and polyphenol characterization. Food Chem 279:347–355

    Article  CAS  PubMed  Google Scholar 

  • Smith RM (2003) Before the injection—modern methods of sample preparation for separation techniques. J Chromatogr 1000:3–27

    Article  CAS  Google Scholar 

  • Su DL, Li PJ, Quek SY, Huang ZQ, Yuan YJ, Li GY, Shan Y (2019) Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chem 286:1–7

    Article  CAS  PubMed  Google Scholar 

  • Suri S, Singh A, Nema PK (2021) Recent advances in valorization of citrus fruits processing waste: a way forward towards environmental sustainability. Food Sci Biotechnol 30:1601–1626

    Article  PubMed  PubMed Central  Google Scholar 

  • Suri S, Singh A, Nema PK (2022a) Current applications of citrus fruit processing waste: a scientific outlook. Appl Food Res 2:100050

    Article  CAS  Google Scholar 

  • Suri S, Singh A, Nema PK, Malakar S, Arora VK (2022b) Sweet lime (Citrus limetta) peel waste drying approaches and effect on quality attributes, phytochemical and functional properties. Food Biosci 48:101789

    Article  CAS  Google Scholar 

  • Tocmo R, Pena-Fronteras J, Calumba KF, Mendoza M, Johnson JJ (2020) Valorization of pomelo (Citrus grandis Osbeck) peel: a review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 19:1969–2012

    Article  CAS  PubMed  Google Scholar 

  • Toumi ML, Merzoug S, Boutefnouchet A, Tahraoui A, Ouali K, Guellati MA (2009) Hesperidin, a natural citrus flavanone, alleviates hyperglycaemic state and attenuates embryopathies in pregnant diabetic mice. J Med Plant Res 3:862–869

    CAS  Google Scholar 

  • Tsai HL, Chang SK, Chang SJ (2007) Antioxidant content and free radical scavenging ability of fresh red pummelo [Citrus grandis (L.) Osbeck] juice and freeze-dried products. J Agric Food Chem 55:2867–2872

    Article  CAS  PubMed  Google Scholar 

  • USDA (2018) National Nutrient Database for Standard Reference (All Nutrients). Nutrient data for 2018, Citrus fruit. https://fdc.nal.usda.gov/fdc-app.html#/. Accessed 29 May 2022

  • Velasco R, Licciardello C (2014) A genealogy of the citrus family. Nat Biotechnol 32:640–642

    Article  CAS  PubMed  Google Scholar 

  • Vinatoru M, Toma M, Filip P, Achim T, Stan N, Mason TJ, … Lazurca D (1998) Ultrasonic reactor dedicated to the extraction of active principles from plants. Romanian Patent 98-01014

    Google Scholar 

  • Vuong QV, Golding JB, Stathopoulos CE, Nguyen MH, Roach PD (2011) Optimizing conditions for the extraction of catechins from green tea using hot water. J Sep Sci 34:3099–3106

    Article  CAS  PubMed  Google Scholar 

  • Vuong QV, Golding JB, Stathopoulos CE, Roach PD (2013) Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. Food Res Int 53:713–719

    Article  CAS  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Wang S, Yang C, Tu H, Zhou J, Liu X, Cheng Y, Luo J, Deng X, Zhang H, Xu J (2017) Characterization and metabolic diversity of flavonoids in citrus species. Sci Rep 7:1–10

    PubMed  PubMed Central  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Rokhsar D (2014) Complex history of admixture during citrus domestication revealed by genome analysis. Nat Biotechnol 32:LBNL-7054E

    Article  Google Scholar 

  • Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, Ishikawa S, Nakamura Y, Kayaba K (2011) Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study. J Epidemiol 21:1103010218

    Article  Google Scholar 

  • Zhang H, Xi W, Yang Y, Zhou X, Liu X, Yin S et al (2015) An on-line HPLC-FRSD system for rapid evaluation of the total antioxidant capacity of Citrus fruits. Food Chem 172:622–629

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Xi W, Hu Y, Nie C, Zhou Z (2016) Antioxidant activity of Citrus fruits. Food Chem 196:885–896

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suri, S., Singh, A., Nema, P.K. (2023). Bioactive Compounds in Citrus Fruits: Extraction and Identification. In: Singh Purewal, S., Punia Bangar, S., Kaur, P. (eds) Recent Advances in Citrus Fruits. Springer, Cham. https://doi.org/10.1007/978-3-031-37534-7_14

Download citation

Publish with us

Policies and ethics