Skip to main content

Cluster Analysis as a Tool for the Territorial Categorization of Energy Consumption in Buildings Based on Weather Patterns

  • Chapter
  • First Online:
Machine Intelligence for Smart Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1105))

  • 169 Accesses

Abstract

This book chapter explores the application of k-means, an unsupervised learning technique designed to allow the categorization of patterns and statistical and geographic indicators of energy consumption in various climatic regions of Mexico. It investigates the relationship between energy consumption and climatic and operational patterns in a case study of State Social Housing. The k-means results demonstrate how the distribution of the groups obeys temperature and relative humidity patterns, which can be visualized using Geographic Information Systems software. This methodology has broad implications for future studies on thermal comfort, energy poverty, and pollutant emissions and lays the foundation for replicable research on energy efficiency in housing and other related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiménez Torres M, Bienvenido-Huertas D, May Tzuc O, Bassam A, Ricalde Castellanos LJ, Flota-Bañuelos M (2023) Assessment of climate change’s impact on energy demand in Mexican buildings: projection in single-family houses based on representative concentration pathways. Energy Sustain Dev 72:185–201. https://doi.org/10.1016/j.esd.2022.12.012

    Article  Google Scholar 

  2. Vázquez-Torres CE, Bienvenido-Huertas D, Beizaee A, Bassam A, Torres MJ (2023) Thermal performance of historic buildings in Mexico: an analysis of passive systems under the influence of climate change. Energy Sustain Dev 72:100–113. https://doi.org/10.1016/j.esd.2022.12.002

    Article  Google Scholar 

  3. Rashad M, Żabnieńska-Góra A, Norman L, Jouhara H (2022) Analysis of energy demand in a residential building using TRNSYS. Energy 254:124357. https://doi.org/10.1016/j.energy.2022.124357

    Article  Google Scholar 

  4. González-Torres M, Pérez-Lombard L, Coronel JF, Maestre IR, Yan D (2022) A review on buildings energy information: trends, end-uses, fuels and drivers. Energy Rep 8:626–637. https://doi.org/10.1016/j.egyr.2021.11.280

    Article  Google Scholar 

  5. Magrini A, Marenco L, Bodrato A (2022) Energy smart management and performance monitoring of a NZEB: analysis of an application. Energy Rep 8:8896–8906. https://doi.org/10.1016/j.egyr.2022.07.010

    Article  Google Scholar 

  6. Hawila AAW, Pernetti R, Pozza C, Belleri A (2022) Plus energy building: operational definition and assessment. Energy Build 265:112069. https://doi.org/10.1016/j.enbuild.2022.112069

    Article  Google Scholar 

  7. Rubel F, Brugger K, Haslinger K, Auer I (2017) The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol Zeitschrift 26:115–125. https://doi.org/10.1127/metz/2016/0816

    Article  Google Scholar 

  8. Walsh A, Cóstola D, Labaki LC (2022) Performance-based climatic zoning method for building energy efficiency applications using cluster analysis. Energy 255:124477. https://doi.org/10.1016/j.energy.2022.124477

    Article  Google Scholar 

  9. Pérez-Fargallo A, Bienvenido-Huertas D, Rubio-Bellido C, Trebilcock M (2020) Energy poverty risk mapping methodology considering the user’s thermal adaptability: the case of Chile. Energy Sustain Dev 58:63–77. https://doi.org/10.1016/j.esd.2020.07.009

    Article  Google Scholar 

  10. Bienvenido-Huertas D, Marín-García D, Carretero-Ayuso MJ, Rodríguez-Jiménez CE (2021) Climate classification for new and restored buildings in Andalusia: analysing the current regulation and a new approach based on k-means. J Build Eng 43:102829. https://doi.org/10.1016/j.jobe.2021.102829

    Article  Google Scholar 

  11. Bienvenido-Huertas D, Rubio-Bellido C, Marín-García D, Canivell J (2021) Influence of the Representative Concentration Pathways (RCP) scenarios on the bioclimatic design strategies of the built environment. Sustain Cities Soc 72:103042. https://doi.org/10.1016/j.scs.2021.103042

    Article  Google Scholar 

  12. Xiong J, Yao R, Grimmond S, Zhang Q, Li B (2019) A hierarchical climatic zoning method for energy efficient building design applied in the region with diverse climate characteristics. Energy Build 186:355–367. https://doi.org/10.1016/j.enbuild.2019.01.005

    Article  Google Scholar 

  13. Bhatnagar M, Mathur J, Garg V (2018) Determining base temperature for heating and cooling degree-days for India. J Build Eng 18:270–280. https://doi.org/10.1016/j.jobe.2018.03.020

    Article  Google Scholar 

  14. Álvarez-Alvarado JM, Ríos-Moreno JG, Ventura-Ramos EJ, Ronquillo-Lomeli G, Trejo-Perea M (2020) An alternative methodology to evaluate sites using climatology criteria for hosting wind, solar, and hybrid plants. Energy Sources, Part A Recover Util Environ Eff 1–18. https://doi.org/10.1080/15567036.2020.1772911

  15. CONAGUA CN del A (2022) Precipitación

    Google Scholar 

  16. Energía S de (2019) Balance Nacional de Energía 2020. 145

    Google Scholar 

  17. Encuesta Nacional de Vivienda (2021) Comunicado de Prensa. Encuesta Nacional de vivienda (ENVI), 2020. Principales resultados. Comun Prensa 493/21 1:1–30

    Google Scholar 

  18. SENER S de E (2011) Norma Oficial Mexicana NOM-020-ENER-2011. 47

    Google Scholar 

  19. Mirkin B (2011) Principal component analysis and SVD. In: Mirkin B (ed) Springer London, London, pp 173–219

    Google Scholar 

  20. Subasi A (2020) Machine learning techniques. In: Subasi ABT-PML for DAUP (ed) Practical Machine Learning for data analysis using Python. Elsevier, pp 91–202

    Google Scholar 

  21. De S, Dey S, Bhatia S, Bhattacharyya S (2022) An introduction to data mining in social networks. In: De S, Dey S, Bhattacharyya S, Bhatia SBT-ADMT and M for SC (eds) advanced data mining tools and methods for social computing. Elsevier, pp 1–25

    Google Scholar 

  22. Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding W, Lin C-T (2017) A review of clustering techniques and developments. Neurocomputing 267:664–681. https://doi.org/10.1016/j.neucom.2017.06.053

    Article  Google Scholar 

  23. Kononenko I, Kukar M (2007) Cluster analysis. In: Kononenko I, Kukar MBT-ML and DM (eds) Machine Learning and data mining. Elsevier, pp 321–358

    Google Scholar 

  24. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31:651–666. https://doi.org/10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  25. Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2:165–193. https://doi.org/10.1007/s40745-015-0040-1

    Article  Google Scholar 

  26. Raschka S (2019) Python Machine Learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics, 3er edn. Packt Publishing Ltd., Birmingham, UK

    Google Scholar 

  27. MathWorks (2015) Statistics and Machine Learning toolbox release notes. The MathWorks, Inc.

    Google Scholar 

  28. Google Developers (2022) Machine Learning—clustering workflow. https://developers.google.com/machine-learning/clustering?hl=es-419. Accessed 15 Feb 2023

  29. Mathworks (2017) Statistics and Machine Learning Toolbox TM User’s Guide R2017a

    Google Scholar 

  30. Jimenez Torres M, Bienvenido-Huertas D, May Tzuc O, Ricalde Castellanos L, Flota Banuelos M, Bassam A (2022) Projection of the current and future panorama of thermal comfort in Mexico: An approach from CDH to face the climate change. In: 2022 7th international conference on smart and sustainable technologies (SpliTech). IEEE, pp 1–6

    Google Scholar 

  31. INEGI (2018) Primera encuesta nacional sobre consumo de energéticos en viviendas particulares (ENCEVI)

    Google Scholar 

  32. de Dear R (2004) Thermal comfort in practice. Indoor Air 14:32–39. https://doi.org/10.1111/j.1600-0668.2004.00270.x

    Article  Google Scholar 

  33. Remund J, Müller S, Schmutz M, Barsotti D, Graf P, Cattin R (2022) Meteonorm 8.1 Manual (Software). 63

    Google Scholar 

  34. DesignBuilder Software LTd (2022) DesignBuilder. https://designbuilder.co.uk/. Accessed 15 Feb 2023

  35. Özbalta TG, Sezer A, Yildiz Y (2012) Models for prediction of daily mean indoor temperature and relative humidity: education building in Izmir, Turkey. Indoor Built Environ 21:772–781. https://doi.org/10.1177/1420326X11422163

    Article  Google Scholar 

  36. McKinney W (2010) Data structures for statistical computing in Python. In: van der Walt S, Millman J (eds) {P}roceedings of the 9th {P}ython in {S}cience {C}onference, pp 56–61

    Google Scholar 

  37. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2012) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830. https://doi.org/10.1007/s13398-014-0173-7.2

    Article  MathSciNet  MATH  Google Scholar 

  39. Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

Download references

Acknowledgements

Coauthor Mario Jiménez Torres is thankful for the financial support granted by CONAHCYT (CVU No. 930301, scholarship no. 785382) to pursue a doctoral grand in Universidad Autónoma de Yucatán, México. This work is part of project 053/UAC/2022 and is a derivative product of Thematic Network 722RT0135 “Red Iberoamericana de Pobreza Energética y Bienestar Ambiental” (RIPEBA), which provided financial support through the CYTED Program’s 2021 call for Thematic Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. May Tzuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

May Tzuc, O., Jiménez Torres, M., Rodriguez, C.M., Demesa López, F., Noh Pat, F. (2023). Cluster Analysis as a Tool for the Territorial Categorization of Energy Consumption in Buildings Based on Weather Patterns. In: Adadi, A., Motahhir, S. (eds) Machine Intelligence for Smart Applications. Studies in Computational Intelligence, vol 1105. Springer, Cham. https://doi.org/10.1007/978-3-031-37454-8_4

Download citation

Publish with us

Policies and ethics