Skip to main content

Climate Change and Wine Quality

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 1

Abstract

Climate change has the potential to jeopardize the sustainability of wine production in various geographical areas, primarily by affecting wine quality, and safety. Climate has a considerable influence on wine characteristics, which is based on an intricate interplay between water availability, temperature, plant material, and vineyard management. The primary effects can be summed up as follows: high alcohol content, high pH and low acidity, development of undesirable microorganisms, accumulation of mycotoxins, and biogenic amines (BAs) in wines.

Both yield and quality have been improved by selecting plant material and vineyard management methods based on the climatic conditions. However, because of climate change, several adaptation strategies have been proposed. For instance, to respond to higher temperatures, new varieties have been selected and farming management methods have been modified.

This chapter provides an overview of the main impacts of climate change on grape composition and wine quality. Furthermore, the possibility of utilizing microorganisms to mitigate the negative aspects of climate change is investigated in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso A, Belda I, Santos A, Navascués E, Marquina D (2015) Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control 51:129–134

    Google Scholar 

  • Azzolini M, Fedrizzi B, Tosi E, Finato F, Vagnoli P, Scrinzi C, Zapparoli G (2012) Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. Eur Food Res Technol 235:303–313

    Google Scholar 

  • Bagheri B, Bauer FF, Setati ME (2015) The diversity and dynamics of indigenous yeast communities in grape must from vineyards employing different agronomic practices and their influence on wine fermentation. S Afr J Enol Vitic 36:243–251

    Google Scholar 

  • Balikci EK, Tanguler H, Jolly NP, Erten H (2016) Influence of Lachancea thermotolerans on Cv. Emir wine fermentation. Yeast 33:313–321

    PubMed  Google Scholar 

  • Barata A, Gonzalez S, Malfeito-Ferreira M, Querol A, Loureiro V (2008) Sour rot-damaged grapes are sources of wine spoilage yeasts. FEMS Yeast Res 8:1008–1017

    PubMed  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259

    PubMed  Google Scholar 

  • Bartowsky EJ, Costello PJ, Chambers PJ (2015) Emerging trends in the application of malolactic fermentation. Aust J Grape Wine Res 21:663–669

    Google Scholar 

  • Basile B, Caccavello G, Giaccone M, Forlani M (2015) Effects of early shading and defoliation on bunch compactness, yield components, and berry composition of Aglianico grapevines under warm climate conditions. Am J Enol Vitic 66:234–243

    Google Scholar 

  • Bedrech SA, Farag SG (2015) Usage of some sunscreens to protect the Thompson Seedless and Crimson Seedless grapevines growing in hot. Nat Sci 13:35–41

    Google Scholar 

  • Belancic A, Agosin E, Ibacache A, Bordeu E, Baumes R, Razungles A, Bayonove CL (1997) Influence of sun exposure on the aromatic composition of Chilean Muscat grape cultivars Moscatel de Alejandria and Moscatel rosada. Am J Enol Vitic 48:181–186

    Google Scholar 

  • Berbegal C, Fragasso M, Russo P, Bimbo F, Grieco F, Spano G, Capozzi V (2019) Climate changes and food quality: the potential of microbial activities as mitigating strategies in the wine sector. Fermentation 5:85

    Google Scholar 

  • Bernardo S, Dinis LT, Luzio A, Pinto G, Meijon M, Valledor L, Conde A, Geros H, Correia CM, Moutinho-Pereira J (2017) Kaolin particle film application lowers oxidative damage and DNA methylation on grapevine (Vitis vinifera L.). Environ Exp Bot 139:39–47

    Google Scholar 

  • Cappozzi V, Garofalo C, Chiriatti MA, Grieco F, Spano G (2015) Microbial terroir and food innovation: the case of yeast biodiversity in wine. Microbiol Res 181:75–83

    Google Scholar 

  • Caridi A, Sidari R, Pulvirenti A, Meca G, Ritieni A (2012) Ochratoxin A adsorption phenotype: an inheritable yeast trait. J Gen Appl Microbiol 58:225–233

    PubMed  Google Scholar 

  • Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R (2016) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7:642

    PubMed  PubMed Central  Google Scholar 

  • Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678

    PubMed  PubMed Central  Google Scholar 

  • Coulter AD, Henschke PA, Simos CA, Pretorius IS (2008) When the heat is on, yeast fermentation runs out of puff. Aust NZ Wine Ind J 23:26–30

    Google Scholar 

  • Dam D, Molitor D, Beyer M (2019) Natural compounds for controlling Drosophila suzukii. A review. Agron Sustain Dev 39:53

    Google Scholar 

  • Daugherty MP, Bosco D, Almeida RPP (2009) Temperature mediates vector transmission efficiency: Inoculum supply and plant infection dynamics. Ann Appl Biol 155:361–369

    Google Scholar 

  • De Jesús CL, Bartley A, Welch A, Berry J (2018) High incidence and levels of Ochratoxin A in wines sourced from the United States. Toxins 10:1

    Google Scholar 

  • De Orduna RM (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855

    Google Scholar 

  • Dinis LT, Bernardo S, Conde A, Pimentel D, Ferreira H, Felix L, Geros H, Correia CM, Moutinho-Pereira J (2016) Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. J Plant Physiol 191:45–53

    PubMed  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    Google Scholar 

  • Duchene E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Appl Genet 124:623–635

    Google Scholar 

  • Flexas J, Galmes J, Galle A, Gulias J, Pou A, Ribas-Carbo M, Tomas M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121

    Google Scholar 

  • Fraga H, Pinto JG, Santos JA (2019) Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Clim Change 152:179–193

    Google Scholar 

  • Garde-Cerdán T, Lorenzo C, Lara JF, Pardo F, Ancin-Azpilicueta C, Salinas MR (2009) Study of the evolution of nitrogen compounds during grape ripening. Application to differentiate grape varieties and cultivated systems. J Agric Food Chem 57:2410–2419

    PubMed  Google Scholar 

  • Garofalo C, El Khoury M, Lucas P, Bely M, Russo P, Spano G, Capozzi V (2015) Autochthonous starter cultures and indigenous grape variety for regional wine production. J Appl Microbiol 118:1395–1408

    PubMed  Google Scholar 

  • Gomez JA, Gema Guzman M, Giraldez JV, Fereres E (2009) The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Till Res 106:137–144

    Google Scholar 

  • Grifoni D, Carreras G, Zipoli G, Sabatini F, Dalla Marta A, Orlandini S (2008) Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy. Int J Biometeorol 52:755–763

    PubMed  Google Scholar 

  • Gutiérrez-Gamboa G, Garde-Cerdán T, Carrasco-Quiroz M, Martínez-Gil AM, Moreno-Simunovic Y (2018) Improvement of wine volatile composition through foliar nitrogen applications to Cabernet Sauvignon grapevines in a warm climate. Chil J Agric Res 78:216–227

    Google Scholar 

  • Holland T, Smit B (2010) Climate change and the wine industry: current research themes and new directions. J Wine Res 21:125–136

    Google Scholar 

  • Hu K, Jin GJ, Xu YH, Tao YS (2018) Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Res Int 108:119–127

    PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2018) Special report. Global warming of 1.5°C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_

  • International Agency for Research on Cancer (IARC) (2007) International agency for research. In: Alcoholic beverage consumption and ethyl carbamate (urethane), vol 96. World Health Organization, Lyon, pp 1–5

    Google Scholar 

  • Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237

    PubMed  Google Scholar 

  • Jones GV (2006) Climate and Terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir—the geoscience perspective. Geoscience Canada, Geological Association of Canada, Saint John

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343

    Google Scholar 

  • Judit G, Gabor Z, Adam D, Tamas V, Gyorgy B (2011) Comparison of three soil management methods in the Tokaj wine region. Mitt Klosterneubg 61:187–195

    Google Scholar 

  • Juega M, Nunez YP, Carrascosa AV, Martinez-Rodriguez AJ (2012) Influence of yeast mannoproteins in the aroma improvement of white wines. J Food Sci 77:M499–M504

    PubMed  Google Scholar 

  • Karvonen JI (2014) Northern european viticulture compared to Central European high altitude viticulture: annual growth cycle of grapevines in the years 2012–2013. Int J Wine Res 6:1–7

    Google Scholar 

  • King A, Richard Dickinson J (2000) Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16:499–506

    PubMed  Google Scholar 

  • Koech R, Langat P (2018) Improving irrigation water use efficiency: a review of advances, challenges and opportunities in the Australian context. Water 10:1771

    Google Scholar 

  • Liu J, Arneborg N, Toldam-Andersen TB, Petersen MA, Bredie WL (2017) Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines. J Sci Food Agric 97:3594–3602

    PubMed  Google Scholar 

  • Masneuf-Pomarede I, Juquin E, Miot-Sertier C, Renault P, Laizet Y, Salin F, Alexandre H, Capozzi V, Cocolin L, Colonna-Ceccaldi B et al (2015) The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res 15:fov045

    PubMed  Google Scholar 

  • Mendes Ferreira A, Clímaco MC, Mendes Faia A (2001) The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components–a preliminary study. J Appl Microbiol 91:67–71

    PubMed  Google Scholar 

  • Morales-Castilla I, García de Cortázar-Atauri I, Cook BI, Lacombe T, Parker A, van Leeuwen C, Nicholas KA, Wolkovich EM (2020) Diversity buyers winegrowing regions from climate change losses. Proc Natl Acad Sci U S A 117:2864–2869

    PubMed  PubMed Central  Google Scholar 

  • Morata A, Loira I, Tesfaye W, Bañuelos MA, González C, Suárez Lepe JA (2018) Lachancea thermotolerans applications in wine technology. Fermentation 4:53

    Google Scholar 

  • Moriondo M, Bindi M, Fagarazzi C, Ferrise R, Trombi G (2011) Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg Environ Change 11:553–567

    Google Scholar 

  • Moriondo M, Jones GV, Bois B, Dibari C, Ferrise R, Trombi G, Bindi M (2013) Projected shifts of wine regions in response to climate change. Clim Change 119:825–839

    Google Scholar 

  • Niu T, Li X, Guo Y, Ma Y (2019) Identification of a lactic acid bacteria to degrade biogenic amines in chinese rice wine and its enzymatic mechanism. Foods 8:312

    PubMed  PubMed Central  Google Scholar 

  • Ollat N, Bordenave L, Tandonnet JP, Boursiquot JM, Marguerit E (2016) Grapevine rootstocks: origins and perspectives. Acta Hortic 1136:11–22

    Google Scholar 

  • Organisation Internationale de la vigne et du vin (OIV) (2019) INTERNATIONAL CODE OF OENOLOGICAL PRACTICES. Retrived from, http://www.oiv.int/public/medias/6558/code-2019-en.pdf

  • Organisation Internationale de la vigne et du vin (OIV) (2022) STATE OF THE WORLD VINE AND WINE SECTOR 2021. Retrived from, https://www.oiv.int/sites/default/files/documents/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6_0.pdf

  • Oro L, Ciani M, Comitini F (2014) Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol 116:1209–1217

    PubMed  Google Scholar 

  • Padilla B, Gil JV, Manzanares P (2016) Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front Microbiol 7:411

    PubMed  PubMed Central  Google Scholar 

  • Parker A, de Cortzar G, Atauri I, van Leeuwen C, Chuine I (2011) General phenological model to characterise timing of flowering and veraison of Vitis vinifera L. Aust J Grape Wine Res 17:206–216

    Google Scholar 

  • Pavlousek P (2011) Evaluation of drought tolerance of new grapevine rootstock hybrids. J Environ Biol Acad Environ Biol India 32:543–549

    Google Scholar 

  • Perpetuini G, Tittarelli F, Battistelli N, Arfelli G, Suzzi G, Tofalo R (2020a) Biogenic amines in global beverages. In: Saad B, Tofalo R (eds) Biogenic Amines in food: analysis, occurrence and toxicity. The Royal Society of Chemistry, Cambridge, UK, pp 133–156

    Google Scholar 

  • Perpetuini G, Tittarelli F, Battistelli N, Suzzi G, Tofalo R (2020b) Contribution of Pichia manshurica strains to aroma profile of organic wines. Eur Food Res Technol 246:1405–1417

    Google Scholar 

  • Perpetuini G, Rossetti AP, Tittarelli F, Battistelli N, Arfelli G, Suzzi G, Tofalo R (2021) Promoting Candida zemplinina adhesion on oak chips: a strategy to enhance esters and glycerol content of Montepulciano d’Abruzzo organic wines. Food Res Int 150:110772

    PubMed  Google Scholar 

  • Perpetuini G, Rossetti AP, Battistelli N, Zulli C, Cichelli A, Arfelli G, Tofalo R (2022) Impact of vineyard management on grape fungal community and Montepulciano d'Abruzzo wine quality. Food Res Int 158:111577

    PubMed  Google Scholar 

  • Pons A, Allamy L, Schüttler A, Rauhut D, Thibon C, Darriet P (2017) What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 51:141–146

    Google Scholar 

  • Pretorius IS (2016) Conducting wine symphonics with the aid of yeast genomics. Beverages 2:36

    Google Scholar 

  • Quintela S, Villarán MC, de Armentia IL, Elejalde E (2013) Ochratoxin A removal in wine: a review. Food Control 30:439–445

    Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    PubMed  PubMed Central  Google Scholar 

  • Renault P, Coulon J, de Revel G, Barbe JC, Bely M (2015) Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int J Food Microbiol 207:40–48

    PubMed  Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud-Funel A (1998) Traité d’Oenologie I. Dunod, Paris

    Google Scholar 

  • Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE (2014) Origins of grape and wine Aroma. Part 1. Chemical components and Viticultural impacts. Am J Enol Vitic 65:1–24

    Google Scholar 

  • Ruiz J, Belda I, Beisert B, Navascués E, Marquina D, Calderón F, Rauhut D, Santos A, Benito S (2018) Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl Microbiol Biotechnol 102:8501–8509

    PubMed  Google Scholar 

  • Russo P, Tufariello M, Renna R, Tristezza M, Taurino M, Palombi L, Capozzi V, Rizzello CG, Grieco F (2020) New insights into the oenological significance of Candida zemplinina: impact of selected autochthonous strains on the volatile profile of apulian wines. Microorganisms 8:628

    PubMed  PubMed Central  Google Scholar 

  • Saez JS, Lopes CA, Kirs VE, Sangorrín M (2011) Production of volatile phenols by Pichia manshurica and Pichia membranifaciens isolated from spoiled wines and cellar environment in Patagonia. Food Microbiol 28:503–509

    PubMed  Google Scholar 

  • Santos JA, Costa R, Fraga H (2018) New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theor Appl Climatol 135:1215–1226

    Google Scholar 

  • Sauer T, Havlík P, Schneider UA, Schmid E, Kindermann G, Obersteiner M (2010) Agriculture and resource availability in a changing world: the role of irrigation. Water Resour Res 46:W06503

    Google Scholar 

  • Schmidtke LM, Blackman JW, Agboola SO (2012) Production technologies for reduced alcoholic wines. J Food Sci 77:R25–R41

    PubMed  Google Scholar 

  • Smit AY, du Toit WJ, Stander M, du Toit M (2013) Evaluating the influence of maceration practices on biogenic amine formation in wine. LWT-Food Sci Technol 53:297–307

    Google Scholar 

  • Stoll M, Bischoff-Schaefer M, Lafontaine M, Tittmann S, Henschke J (2013) Impact of various leaf area modifications on berry maturation in Vitis vinifera L. cv. Riesling. Acta Hortic 978:293–299

    Google Scholar 

  • Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. J Ind Microbiol Biotechnol 38:1145–1159

    PubMed  Google Scholar 

  • Tello J, Ibanez J (2017) What do we know about grapevine bunch compactness? A state-of-the-art review. Aust J Grape Wine Res 24:6–23

    Google Scholar 

  • Tofalo R, Patrignani F, Lanciotti R, Perpetuini G, Schirone M, Di Gianvito P, Pizzoni D, Arfelli G, Suzzi G (2016a) Aroma profile of Montepulciano d’Abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts. Front Microbiol 7:610

    PubMed  PubMed Central  Google Scholar 

  • Tofalo R, Perpetuini G, Schirone M, Suzzi G (2016b) Biogenic Amines: toxicology and health effect. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Oxford, pp 424–429

    Google Scholar 

  • Tofalo R, Suzzi G, Perpetuini G (2021) Discovering the influence of microorganisms on wine color. Front Microbiol 12:790935

    PubMed  PubMed Central  Google Scholar 

  • Tristezza M, Tufariello M, Capozzi V, Spano G, Mita G, Grieco F (2016) The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production. Front Microbiol 7:670

    PubMed  PubMed Central  Google Scholar 

  • Tufariello M, Capozzi V, Spano G, Cantele G, Venerito P, Mita G, Grieco F (2020) Effect of co-inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the industrial production of Negroamaro wine in Apulia (Southern Italy). Microorganisms 8:726. https://doi.org/10.3390/microorganisms8050726

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela C (2016) The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 100:9861–9874

    PubMed  Google Scholar 

  • Varela C, Sengler F, Solomon M, Curtin C (2016) Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 209:57–64

    PubMed  Google Scholar 

  • White MA, Di Enbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci 103:11217–11222

    PubMed  PubMed Central  Google Scholar 

  • Wolkovich EM, de Cortazar-Atauri IG, Morales-Castilla I, Nicholas KA, Lacombe T (2018) From Pinot to Xinomavro in the world’s future wine-growing regions. Nat Clim Chang 8:29–37

    Google Scholar 

  • Xi ZM, Zhang ZW, Cheng YF, Li H (2010) The effect of vineyard cover crop on main monomeric phenols of grape berry and wine in Vitis vinifera L. cv. Cabernet Sauvignon. Agric Sci China 9:440–448

    Google Scholar 

  • Zhang BQ, Shen JY, Duan CQ, Yan GL (2018) Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermentation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc icewine. Front Microbiol 9:2303

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Perpetuini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tofalo, R., Rossetti, A.P., Perpetuini, G. (2023). Climate Change and Wine Quality. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-37424-1_7

Download citation

Publish with us

Policies and ethics