Skip to main content

Climate Resilient Livestock Production System in Tropical and Subtropical Countries

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 1

Abstract

Livestock production and human civilization are interlinked. Since the start of human civilization, livestock has been playing vital roles. Livestock serves as a source of milk and protein, an agricultural business, and a pet. Every individual requires animal proteins on a daily basis, such as meat and dairy products, the majority of which are derived from livestock animals. Industrialization of livestock production has become an important component of global GDP and a source of income for both industrialists and low-income marginal communities around the world. Production of livestock depends on intrinsic factors as well as environmental factors. Environmental factors such as temperature, humidity, rainfall, and so on have a significant impact on farm animal production, survivability, and disease load. The level of environmental stress differs in different climatic conditions. Therefore, a concrete understanding of environmental stress factors is required to ensure the optimum production of livestock. In this chapter, we discuss thermal stress and its detection methods, adaptive thermal stress management, the effects of temperature on bovine health, milk production, beef production, and reproductive performance, thermal effects on water availability, livestock diseases and intramammary infection, uses of small ruminants for livelihood, livestock sources of methane, and strategies to mitigate thermal stress and methane emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelnour SA, Abd El-Hack ME, Khafaga AF, Arif M, Taha AE, Noreldin AE (2019) Stress biomarkers and proteomics alteration to thermal stress in ruminants: a review. J Therm Biol 79:120–134

    PubMed  Google Scholar 

  • Abilay TA, Mitra R, Johnson HD (1975) Plasma cortisol and total progestin levels in Holstein steers during acute exposure to high environmental temperature (42 C) conditions. J Anim Sci 41(1):113–117

    PubMed  Google Scholar 

  • Abubakar M, Jamal SM, Arshed MJ, Hussain M, Ali Q (2009) Peste des petits ruminants virus (PPRV) infection; its association with species, seasonal variations and geography. Trop Anim Health Prod 41(7):1197–1202

    PubMed  Google Scholar 

  • Abutarbush S, Ababneh M, Al Zoubi I, Al Sheyab O, Al Zoubi M, Alekish M, Al Gharabat R (2015) Lumpy skin disease in Jordan: disease emergence, clinical signs, complications and preliminary-associated economic losses. Transbound Emerg Dis 62:549–554

    PubMed  Google Scholar 

  • Adair ER, Black DR (2003) Thermoregulatory responses to RF energy absorption. Bioelectromagnetics 24:S17–S38

    Google Scholar 

  • Aggarwal A (2004) Effect of environment on hormones, blood metabolites, milk production and composition under two sets of management in cows and buffaloes. Karnal (Haryana), India: PhD Thesis submitted to National Dairy Research Institute

    Google Scholar 

  • Aggarwal A, Singh M (2009) Changes in hormonal levels during early lactation in summer calving cows kept under mist cooling system. Indian J Anim Nutr 26(4):337–340

    Google Scholar 

  • Aggarwal A, Singh M (2010) Hormonal changes in heat-stressed Murrah buffaloes under two different cooling systems. Buffalo Bull 29(1):1–6

    Google Scholar 

  • Aggarwal A, Upadhyay R (2013) Shelter management for alleviation of heat stress in cows and buffaloes. In: Heat stress and animal productivity. Springer Publishing, New Delhi, pp 169–183

    Google Scholar 

  • Agrawal D, Kamra D (2010) Global warming: role of livestock and mitigation strategies. In: International conference on “Physiological capacity building in livestock under changing climate scenario”. Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar. pp. 73–80

    Google Scholar 

  • Ahamed MS, Sultan M, Shamshiri RR, Rahman MM, Aleem M, Balasundram SK (2022) Present status and challenges of fodder production in controlled environments: a review. Smart Agric Technol:100080

    Google Scholar 

  • Ahirwar MK, Kataktalware MA, Pushpadass HA, Jeyakumar S, Jash S, Nazar S, Devi GL, Kastelic JP, Ramesha KP (2018) Scrotal infrared digital thermography predicts effects of thermal stress on buffalo (Bubalus bubalis) semen. J Therm Biol 78:51–57

    PubMed  Google Scholar 

  • Ahlberg CM, Allwardt K, Broocks A, Bruno K, Mcphillips L, Taylor A, Krehbiel CR, Calvo-Lorenzo MS, Richards CJ, Place SE, Desilva U, Vanoverbeke DL, Mateescu RG, Kuehn LA, Weaber RL, Bormann JM, Rolf MM (2018) Environmental effects on water intake and water intake prediction in growing beef cattle. J Anim Sci 96(10):4368–4384

    PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Yu YH, Hsiao FS, Su CH, Liu HC, Tobin I, Zhang G, Cheng YH (2022) Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals 12(17):2297

    PubMed  PubMed Central  Google Scholar 

  • Alemneh T, Getabalew M (2019) Strategies to reduce methane emission in ruminants. Int J Ecol Ecosolution 6:16–22

    Google Scholar 

  • Alhussien M, Manjari P, Mohammed S, Sheikh AA, Reddi S, Dixit S, Dang AK (2016) Incidence of mastitis and activity of milk neutrophils in Tharparkar cows reared under semi-arid conditions. Trop Anim Health Prod 48(6):1291–1295

    PubMed  Google Scholar 

  • Alkire S, Deneulin S (2009) A normative framework for development. In: An introduction to the human development and capability approach. Routledge Publishing, pp 25–35

    Google Scholar 

  • Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG (2021) Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development. Front Vet Sci 8:665128

    PubMed  PubMed Central  Google Scholar 

  • Allahverdi A, Feizi A, Takhtfooladi HA, Nikpiran H (2013) Effects of heat stress on acid-base imbalance, plasma calcium concentration, egg production and egg quality in commercial layers. Global Veterinaria 10(2):203–207

    Google Scholar 

  • Allen T, Bligh J (1969) A comparative study of the temporal patterns of cutaneous water vapour loss from some domesticated mammals with epitrichial sweat glands. Comp Biochem Physiol 31(2):347–363

    PubMed  Google Scholar 

  • Almeida RA, Kerro-Dego O, Rius AG (2018) Effect of heat stress on the interaction of streptococcus uberis with bovine mammary epithelial cells. J Dairy Res 85(1):53–56

    PubMed  Google Scholar 

  • Alvarez MB, Johnson HD (1973) Environmental heat exposure on cattle plasma catecholamine and glucocorticoids. J Dairy Sci 56(2):189–194

    PubMed  Google Scholar 

  • Alves MB, Andrade AF, Arruda RP, Batissaco L, Florez-Rodriguez SA, Oliveira BM, Torres MA, Lanconi R, Ravagnani GM, Prado Filho RR, Vellone VS, Losano JD, Franci CR, Nichi M, Celeghini EC (2016) Recovery of normal testicular temperature after scrotal heat stress in rams assessed by infrared thermography and its effects on seminal characteristics and testosterone blood serum concentration. Theriogenology 86(3):795–805 e2

    PubMed  Google Scholar 

  • Ammer S, Lambertz C, Von Soosten D, Zimmer K, Meyer U, Dänicke S, Gauly M (2018) Impact of diet composition and temperature–humidity index on water and dry matter intake of high-yielding dairy cows. J Anim Physiol Anim Nutr (Berl) 102(1):103–113

    PubMed  Google Scholar 

  • Anadón A, Ares I, Martínez-Larrañaga MR, Martínez MA (2019) Prebiotics and probiotics in feed and animal health. In: Nutraceuticals in veterinary medicine. Springer Publishing, pp 261–285

    Google Scholar 

  • Angelos JA (2015) Infectious bovine keratoconjunctivitis (pinkeye). Vet Clin North Am Food Anim Pract 31(1):61–79

    PubMed  Google Scholar 

  • Arias RA, Mader TL (2011) Environmental factors affecting daily water intake on cattle finished in feedlots. J Anim Sci 89(1):245–251

    PubMed  Google Scholar 

  • Arias RA, Delgado C, Keim JP, Gandarillas M (2021) Use of the Comprehensive Climate Index to estimate heat stress response of grazing dairy cows in a temperate climate region. J Dairy Res 88(2):154–161

    PubMed  Google Scholar 

  • Arias RA, Herrera C, Larrain R, Gonzalez F, Mader TL, Velasquez A (2018) Physiological and behavioural response of two dairy cows’ genotypes during summertime in the central region of Chile. Aust J Vet Sci 50(1):9–14

    Google Scholar 

  • Armstrong DV (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77:2044–2050

    PubMed  Google Scholar 

  • Ashutosh A, Dhanda O, Kunou R (2000) Physiological responses of native and crossbred sheep to climatic stress under semi-arid conditions. Indian J Anim Sci 8:857–861

    Google Scholar 

  • Avendaño-Reyes L, Alvarez-Valenzuela F, Correa-Calderón A, Saucedo-Quintero J, Robinson P, Fadel J (2006) Effect of cooling Holstein cows during the dry period on postpartum performance under heat stress conditions. Livest Sci 105:98–206

    Google Scholar 

  • Ayyat MS, Al-Sagheer AA, Abd El-Latif KM, Khalil BA (2018) Organic selenium, probiotics, and prebiotics effects on growth, blood biochemistry, and carcass traits of growing rabbits during summer and winter seasons. Biol Trace Elem Res 186:162–173

    PubMed  Google Scholar 

  • Azam A, Shafique M (2017) Agriculture in Pakistan and its impact on economy. A review. Int J Adv Sci Technol 103:47–60

    Google Scholar 

  • Badinga L, Collier RJ, Thatcher WW, Wilcox CJ (1985) Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment. J Dairy Sci 68:78–85

    PubMed  Google Scholar 

  • Bagath M, Krishnan G, Devaraj C, Rashamol VP, Pragna P, Lees AM, Sejian V (2019) The impact of heat stress on the immune system in dairy cattle: a review. Res Vet Sci 126:94–102

    PubMed  Google Scholar 

  • Balic IM, Milinkovic-Tur S, Samardzija M, Vince S (2012) Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in Simmental bulls. Theriogenology 78:423–431

    PubMed  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru S, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32:216–232

    Google Scholar 

  • Baumgard L, Abuajamieh M, Stoakes S, Sanz-Fernandez M, Johnson J, Rhoads R, Eastridge M (2014) Feeding and managing cows to minimize heat stress. In: Proceedings of the 23rd Tri-State Dairy Nutrition Conference, Fort Wayne. pp. 14–16

    Google Scholar 

  • Baumgard L, Rhoads RP (2012) Effects of environment on metabolism. In: Environmental physiology of livestock. Wiley Publishing, pp 81–100

    Google Scholar 

  • Belding HS, Hatch TF (1955) Index for evaluating heat stress in terms of resulting physiological strains. Heat Piping Air Cond 27(8):129–136

    Google Scholar 

  • Baumgard LH, Rhoads RP Jr (2013) Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci 1(1):311–337

    PubMed  Google Scholar 

  • Beam SW, Butler WR (1998) Energy balance, metabolic hormones, and early postpartum follicular development in dairy cows fed prilled lipid. J Dairy Sci 81(1):121–131

    PubMed  Google Scholar 

  • Beauchemin KA, Mcginn SM (2005) Methane emissions from feedlot cattle fed barley or corn diets. J Anim Sci 83(3):653–661

    PubMed  Google Scholar 

  • Belhadj Slimen I, Najar T, Ghram A, Abdrrabba M (2016) Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr (Berl) 100(3):401–412

    PubMed  Google Scholar 

  • Berling F, Castro FCD, Oliveira ACDS (2022) Influence of heat stress on in vitro oocyte and embryo production in high-yielding Holstein cows. Cienc Anim Bras 23. https://doi.org/10.1590/1809-6891v23e-71852E

  • Berman A (2011) Invited review: are adaptations present to support dairy cattle productivity in warm climates? J Dairy Sci 94(5):2147–2158

    PubMed  Google Scholar 

  • Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A (2014) The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 97(1):471–486

    PubMed  Google Scholar 

  • Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A (2010) Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4(7):1167–1183

    PubMed  Google Scholar 

  • Bernabucci U, Lacetera N, Danieli PP, Bani P, Nardone A, Ronchi B (2009) Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. Int J Biometeorol 53(5):387–395

    PubMed  Google Scholar 

  • Bernabucci U, Lacetera N, Ronchi B, Nardone A (2002) Effects of the hot season on milk protein fractions in Holstein cows. Anim Res 51(1):25–33

    Google Scholar 

  • Berry DP, Bastiaansen JW, Veerkamp RF, Wijga S, Wall E, Berglund B, Calus MP (2012) Genome-wide associations for fertility traits in Holstein-Friesian dairy cows using data from experimental research herds in four European countries. Animal 6(8):1206–1215

    PubMed  Google Scholar 

  • Beshir M, Ramsey JD (1988) Heat stress indices: a review paper. Int J Ind Ergon 3(2):89–102

    Google Scholar 

  • Bett B, Kiunga P, Gachohi J, Sindato C, Mbotha D, Robinson T, Lindahl J, Grace D (2017) Effects of climate change on the occurrence and distribution of livestock diseases. Prev Vet Med 137:119–129

    PubMed  Google Scholar 

  • Bettaieb A, Averill-Bates DA (2015) Thermotolerance induced at a mild temperature of 40 degrees C alleviates heat shock-induced ER stress and apoptosis in HeLa cells. Biochim Biophys Acta, Mol Cell Res 1853(1):52–62

    PubMed  Google Scholar 

  • Beuvink JMW, Spoelstra SF, Hogendorp RJ (1992) An automated-method for measuring time-course of gas-production of feedstuffs incubated with buffered rumen fluid. Neth J Agric Sci 40(4):401–407

    Google Scholar 

  • Bewley J, Einstein M, Grott M, Schutz M (2008a) Comparison of reticular and rectal core body temperatures in lactating dairy cows. J Dairy Sci 91(12):4661–4672

    PubMed  Google Scholar 

  • Bewley J, Grott M, Einstein M, Schutz M (2008b) Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J Dairy Sci 91(10):3880–3887

    PubMed  Google Scholar 

  • Bhakat M, Mohanty T, Gupta A, Abdullah M (2014) Effect of season on semen quality of crossbred (Karan fries) bulls. Adv Anim Vet Sci 2(11):632–637

    Google Scholar 

  • Bhatta R, Enishi O (2007) Measurement of methane production from ruminants. Asian-Australas J Anim Sci 20(8):1305–1318

    Google Scholar 

  • Bhatta R, Malik P, Prasad C, Bhatta R (2015) Enteric methane emission: status, mitigation and future challenges: an Indian perspective. Livest Prod Clim Change 229

    Google Scholar 

  • Biggers BG, Geisert RD, Wetteman RP, Buchanan DS (1987) Effect of heat stress on early embryonic development in the beef cow. J Anim Sci 64(5):1512–1518

    PubMed  Google Scholar 

  • Bitman J, Lefcourt A, Wood D, Stroud B (1984) Circadian and ultradian temperature rhythms of lactating dairy cows. J Dairy Sci 67(5):1014–1023

    PubMed  Google Scholar 

  • Blackshaw JK, Blackshaw A (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust J Exp Agric 34(2):285–295

    Google Scholar 

  • Blaxter KL (1962) The energy metabolism of ruminants. In: The energy metabolism of ruminants. Thomas Publishing, pp 1–329

    Google Scholar 

  • Bodas R, Posado R, Bartolomé DJ, Tabernero De Paz MJ, Herráiz P, Rebollo E, Gómez LJ, García JJ (2014) Ruminal pH and temperature, papilla characteristics, and animal performance of fattening calves fed concentrate or maize silage-based diets. Chil J Agric Res 74(3):280–285

    Google Scholar 

  • Bolocan E (2009) Effects of heat stress on sexual behavior in heifers. Lucrări Științifice-Zootehnie și Biotehnologii, Universitatea de Științe Agricole și Medicină Veterinară a Banatului Timișoara 42(1):141–148

    Google Scholar 

  • Bridges P, Brusie M, Fortune J (2005) Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest Anim Endocrinol 29(3):508–522

    PubMed  Google Scholar 

  • Bruno RG, Rutigliano H, Cerri RL, Robinson PH, Santos JE (2009) Effect of feeding yeast culture on reproduction and lameness in dairy cows under heat stress. Anim Reprod Sci 113:11–21

    PubMed  Google Scholar 

  • Budd G (2001) Assessment of thermal stress—the essentials. J Therm Biol 26:371–374

    Google Scholar 

  • Buffington DE, Collazoarocho A, Canton GH, Pitt D, Thatcher WW, Collier RJ (1981) Black globe-humidity index (Bghi) as comfort equation for dairy-cows. Trans ASAE 24:711–714

    Google Scholar 

  • Burek KA, Gulland FM, O’hara TM (2008) Effects of climate change on Arctic marine mammal health. Ecol Appl 18:126–134

    Google Scholar 

  • Calderon RL (2000) The epidemiology of chemical contaminants of drinking water. Food Chem Toxicol 38:13–20

    Google Scholar 

  • Callaway TR, Carneiro De Melo AM, Russell JB (1997) The effect of nisin and monensin on ruminal fermentations in vitro. Curr Microbiol 35:90–96

    PubMed  Google Scholar 

  • Cao M, Zong C, Zhuang Y, Teng G, Zhou S, Yang T (2021) Modeling of heat stress in sows part 2: comparison of various thermal comfort indices. Animals 11:1498

    PubMed  PubMed Central  Google Scholar 

  • Carabano MJ, Logar B, Bormann J, Minet J, Vanrobays ML, Diaz C, Tychon B, Gengler N, Hammami H (2016) Modeling heat stress under different environmental conditions. J Dairy Sci 99(5):3798–3814

    PubMed  Google Scholar 

  • Cardoso CC, Peripolli V, Amador SA, Brandao EG, Esteves GIF, Sousa CMZ, Franca MFMS, Goncalves FG, Barbosa FA, Montalvao TC, Martins CF, Neto AMF, Mcmanus C (2015) Physiological and thermographic response to heat stress in zebu cattle. Livest Sci 182:83–92

    Google Scholar 

  • Caroprese M, Bradford BJ, Rhoads RP (2021) Editorial: impact of climate change on immune responses in agricultural animals. Front Vet Sci 8:732203

    PubMed  PubMed Central  Google Scholar 

  • Carro M, Ungerfeld E (2015) Utilization of organic acids to manipulate ruminal fermentation and improve ruminant productivity. In: Rumen microbiology: from evolution to revolution. Springer Publishing, pp 177–197

    Google Scholar 

  • Cassandro M, Mele M, Stefanon B (2013) Genetic aspects of enteric methane emission in livestock ruminants. Ital J Anim Sci 12(3):450–458

    Google Scholar 

  • Castillo C, Benedito J, Méndez J, Pereira V, Lopez-Alonso M, Miranda M, Hernández J (2004) Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 115:101–116

    Google Scholar 

  • Ceyhan A, Akyol E, Ünalan A, Çınar S, Ali W (2020) Estimation of the carbon footprint in dairy sheep farm. Iran J Appl Anim Sci 10:639–645

    Google Scholar 

  • Chaidanya K, Shaji S, Niyas P, Sejian V, Bhatta R, Bagath M, Rao G, Kurien E, Varma G (2015) Climate change and livestock nutrient availability: impact and mitigation. J Vet Sci Med Diagn 4:1–7

    Google Scholar 

  • Chang-Fung-Martel J, Harrison M, Brown J, Rawnsley R, Smith A, Meinke H (2021) Negative relationship between dry matter intake and the temperature-humidity index with increasing heat stress in cattle: a global meta-analysis. Int J Biometeorol 65:2099–2109

    PubMed  PubMed Central  Google Scholar 

  • Chedid M, Jaber LS, Giger-Reverdin S, Duvaux-Ponter C, Hamadeh SK (2014) Review: water stress in sheep raised under arid conditions. Can J Anim Sci 94(2):243–257

    Google Scholar 

  • Cheeke P (2000) Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. In: Saponins in food, feedstuffs and medicinal plants. Springer Publishing, pp 241–254

    Google Scholar 

  • Chen S, Yong Y, Ju X (2021) Effect of heat stress on growth and production performance of livestock and poultry: mechanism to prevention. J Therm Biol 99:103019

    PubMed  Google Scholar 

  • Collier R, Zimbelman R, Rhoads R, Rhoads M, Baumgard L (2011) A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows’ Western Dairy Management Conf. Reno, pp. 113–125

    Google Scholar 

  • Collier RJ, Dahl GE, Vanbaale MJ (2006) Major advances associated with environmental effects on dairy cattle. J Dairy Sci 89(4):1244–1253

    PubMed  Google Scholar 

  • Collier RJ, Doelger SG, Head HH, Thatcher WW, Wilcox CJ (1982) Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. J Anim Sci 54(2):309–319

    PubMed  Google Scholar 

  • Cone JW, Vangelder AH, Visscher GJW, Oudshoorn L (1996) Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim Feed Sci Technol 61:113–128

    Google Scholar 

  • Conte G, Ciampolini R, Cassandro M, Lasagna E, Calamari L, Bernabucci U, Abeni F (2018) Feeding and nutrition management of heat-stressed dairy ruminants. Ital J Anim Sci 17(3):604–620

    Google Scholar 

  • Dahl GE (2018) Impact and mitigation of heat stress for mastitis control. Vet Clin North Am Food Anim Pract 34(3):473–478

    PubMed  Google Scholar 

  • Dalcin VC, Fischer V, Daltro DDS, Alfonzo EPM, Stumpf MT, Kolling GJ, Silva MVGBD, Mcmanus C (2016) Physiological parameters for thermal stress in dairy cattle. Rev Bras Zootec 45:458–465

    Google Scholar 

  • Darcan N, Guney O (2008) Alleviation of climatic stress of dairy goats in Mediterranean climate. Small Rumin Res 74:212–215

    Google Scholar 

  • Das KS, Singh J, Singh G, Upadhyay R, Malik R, Oberoi P (2014) Heat stress alleviation in lactating buffaloes: effect on physiological response, metabolic hormone, milk production and composition. Indian J Anim Sci 84(3):275–280

    Google Scholar 

  • Das R, Sailo L, Verma N, Bharti P, Saikia J, Kumar R (2016) Impact of heat stress on health and performance of dairy animals: a review. Vet World 9(3):260–268

    PubMed  PubMed Central  Google Scholar 

  • Dash S, Chakravarty A, Singh A, Upadhyay A, Singh M, Yousuf S (2016) Effect of heat stress on reproductive performances of dairy cattle and buffaloes: a review. Vet World 9(3):235

    PubMed  PubMed Central  Google Scholar 

  • Das NG, Sarker NR, Haque MN (2020) An estimation of greenhouse gas emission from livestock in Bangladesh. J Adv Vet Anim Res 7(1):133

    PubMed  PubMed Central  Google Scholar 

  • Das S (2022) Climate resilient animal husbandry - a review. Int J Livest Res 12(3)

    Google Scholar 

  • Dayton W, White M (2008) Cellular and molecular regulation of muscle growth and development in meat animals. J Anim Sci 86:217–225

    Google Scholar 

  • De Rensis F, Scaramuzzi RJ (2003) Heat stress and seasonal effects on reproduction in the dairy cow - a review. Theriogenology 60(6):1139–1151

    PubMed  Google Scholar 

  • De Rensis F, Saleri R, Garcia-Ispierto I, Scaramuzzi R, López-Gatius F (2021) Effects of heat stress on follicular physiology in dairy cows. Animals 11(12):3406

    PubMed  PubMed Central  Google Scholar 

  • De Souza PT, Salles MGF, Da Costa ANL, Carneiro HAV, De Souza LP, Rondina D, De Araújo AA (2014) Physiological and production response of dairy goats bred in a tropical climate. Int J Biometeorol 58(7):1559–1567

    PubMed  Google Scholar 

  • Demlew BA, Tessma AK (2020) Review on bovine schistosomiasis and its associated risk factors. South Asian Res J App Med Sci 2(5):44–55

    Google Scholar 

  • Diaz FA, Gutierrez-Castillo EJ, Foster BA, Hardin PT, Bondioli KR, Jiang Z (2021) Evaluation of seasonal heat stress on transcriptomic profiles and global DNA methylation of bovine oocytes. Front Genet 12:699920

    PubMed  PubMed Central  Google Scholar 

  • Dirandeh E, Roodbari AR, Colazo M (2015) Double-Ovsynch, compared with presynch with or without GnRH, improves fertility in heat-stressed lactating dairy cows. Theriogenology 83(3):438–443

    PubMed  Google Scholar 

  • Du Preez J (2000) Parameters for the determination and evaluation of heat stress in dairy cattle in South Africa. Onderstepoort J Vet Res 67(4):263–271

    PubMed  Google Scholar 

  • Dunlap SE, Vincent CK (1971) Influence of postbreeding thermal stress on conception rate in beef cattle. J Anim Sci 32(6):1216–1218

    PubMed  Google Scholar 

  • El-Tarabani MS, El-Tarabani AA (2015) Impact of thermal stress on the efficiency of ovulation synchronization protocols in Holstein cows. Anim Reprod Sci 160:138–145

    Google Scholar 

  • Engler D, Pham T, Fullerton MJ, Ooi G, Funder JW, Clarke IJ (1989) Studies of the secretion of corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia. Neuroendocrinology 49(4):367–381

    PubMed  Google Scholar 

  • Farooq U, Samad HA, Shehzad F, Qayyum A (2010) Physiological responses of cattle to heat stress. World Appl Sci J 8:38–43

    Google Scholar 

  • Ferreira RM, Chiaratti MR, Macabelli CH, Rodrigues CA, Ferraz ML, Watanabe YF, Smith LC, Meirelles FV, Baruselli PS (2016) The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biol Reprod 94(3):1–10

    Google Scholar 

  • Fonsêca VDFC, Cândido EP, Neto SG, Saraiva EP, De Araújo Furtado D, Gama JP, Do Nascimento GV, Saraiva CAS, Almeida GHO (2016) Thermoregulatory responses of sindhi and guzerat heifers under shade in a tropical environment. Semina: Ciências Agrárias 37(6):4327–4337

    Google Scholar 

  • Fournel S, Rousseau AN, Laberge B (2017) Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosyst Eng 155:96–123

    Google Scholar 

  • Franklin A (1999) Animals and modern cultures: a sociology of human-animal relations in modernity. In: Animals and modern cultures. Sage Publications, pp 1–224

    Google Scholar 

  • Friedman E, Voet H, Reznikov D, Dagoni I, Roth Z (2011) Induction of successive follicular waves by gonadotropin-releasing hormone and prostaglandin F2α to improve fertility of high-producing cows during the summer and autumn. J Dairy Sci 94(5):2393–2402

    PubMed  Google Scholar 

  • Gaafar H, El-Nahrawy M, Mesbah R, Shams AS, Sayed S, Anas A (2021) Impact of heat stress on growth performance and some blood and physiological parameters of suckling Friesian calves in Egypt. Int J Plant Animal Env Sci 11(3):545–565

    Google Scholar 

  • Galan E, Llonch P, Villagra A, Levit H, Pinto S, Del Prado A (2018) A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle. PLoS One 13(11):e0206520

    PubMed Central  Google Scholar 

  • Gao J, Barkema HW, Zhang L, Liu G, Deng Z, Cai L, Shan R, Zhang S, Zou J, Kastelic JP, Han B (2017) Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J Dairy Sci 100(6):4797–4806

    PubMed  Google Scholar 

  • Garcia-Oliveros LN, De Arruda RP, Batissaco L, Gonzaga VHG, Nogueira VJM, Florez-Rodriguez SA, Almeida FDS, Alves MBR, Pinto SCC, Nichi M, Losano JDA, Kawai GKV, Celeghini ECC (2020) Heat stress effects on bovine sperm cells: a chronological approach to early findings. Int J Biometeorol 64(8):1367–1378

    PubMed  Google Scholar 

  • Garnsworthy PC, Difford GF, Bell MJ, Bayat AR, Huhtanen P, Kuhla B, Lassen J, Peiren N, Pszczola M, Sorg D (2019) Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 9(10):837

    PubMed  PubMed Central  Google Scholar 

  • Garsa AK, Choudhury PK, Puniya AK, Dhewa T, Malik RK, Tomar SK (2019) Bovicins: the bacteriocins of streptococci and their potential in methane mitigation. Probiotics Antimicrob Proteins 11(4):1403–1413

    PubMed  Google Scholar 

  • Gaughan J, Holt S, Hahn G, Mader T, Eigenberg R (2000) Respiration rate: is it a good measure of heat stress in cattle? Asian-Australas J Anim Sci 13:329–332

    Google Scholar 

  • Gaughan J, Mader T, Gebremedhin K (2012) Rethinking heat index tools for livestock. Environ Physio Livest 1:243–263

    Google Scholar 

  • Gesualdi Júnior A, Sales ÉSV, Freitas RS, Henry FDC, Oliveira VDPSD, Gesualdi ACLDS (2014) Effects of heat stress on the physiological parameters and productivity of hair sheep in tropical and coastal environments. Rev Bras Zootec 43:556–560

    Google Scholar 

  • Getachew G, Blummel M, Makkar HPS, Becker K (1998) In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim Feed Sci Technol 72:261–281

    Google Scholar 

  • Gholami H, Chamani M, Towhidi A, Fazeli MH (2011) Improvement of semen quality in Holstein bulls during heat stress by dietary supplementation of omega-3 fatty acids. Int J Fertil Steril 4:160–167

    PubMed  PubMed Central  Google Scholar 

  • Godyn D, Herbut P, Angrecka S (2019) Measurements of peripheral and deep body temperature in cattle - a review. J Therm Biol 79:42–49

    PubMed  Google Scholar 

  • Goel G, Makkar HP (2012) Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44:729–739

    PubMed  Google Scholar 

  • Gorniak T, Meyer U, Südekum K-H, Dänicke S (2014) Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch Anim Nutr 68:358–369

    PubMed  Google Scholar 

  • Grace D, Bett BK, Lindahl JF, Robinson TP (2015) Climate and livestock disease: assessing the vulnerability of agricultural systems to livestock pests under climate change scenarios. CCAFS Working Paper

    Google Scholar 

  • Gupta LD, Das ID, Chaudhari RV (2017) Physiological response to thermal stress in sahiwal and karan fries cows. Int J Livest Res 36(5):275–283. https://doi.org/10.5455/ijlr.20170226092339

  • Guzeloglu A, Ambrose JD, Kassa T, Diaz T, Thatcher MJ, Thatcher WW (2001) Long-term follicular dynamics and biochemical characteristics of dominant follicles in dairy cows subjected to acute heat stress. Anim Reprod Sci 66:15–34

    PubMed  Google Scholar 

  • Gwazdauskas FC (1985) Effects of climate on reproduction in cattle. J Dairy Sci 68:1568–1578

    PubMed  Google Scholar 

  • Habibian M, Sadeghi G, Ghazi S, Moeini MM (2015) Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res 165(2):183–193

    PubMed  Google Scholar 

  • Haddad J, Ne S, Safieh-Garabedian B (2002) Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 133:1–19

    PubMed  Google Scholar 

  • Hagiya K, Hayasaka K, Yamazaki T, Shirai T, Osawa T, Terawaki Y, Nagamine Y, Masuda Y, Suzuki M (2017) Effects of heat stress on production, somatic cell score and conception rate in Holsteins. Anim Sci J 88:3–10

    PubMed  Google Scholar 

  • Hall WB, Mckeon G, Carter J, Day K, Howden S, Scanlan JC, Johnston PW, Burrows W (1998) Climate change in Queensland’s grazing lands: II. An assessment of the impact on animal production from native pastures. Rangel J 20:177–205

    Google Scholar 

  • Hamilton TD, Vizcarra JA, Wettemann RP, Keefer BE, Spicer LJ (1999) Ovarian function in nutritionally induced anoestrous cows: effect of exogenous gonadotrophin-releasing hormone in vivo and effect of insulin and insulin-like growth factor I in vitro. J Reprod Fertil 117:179–187

    PubMed  Google Scholar 

  • Hammami H, Vandenplas J, Vanrobays ML, Rekik B, Bastin C, Gengler N (2015) Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J Dairy Sci 98:4956–4968

    PubMed  Google Scholar 

  • Hammond K, Humphries D, Crompton L, Green C, Reynolds C (2015) Methane emissions from cattle: estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim Feed Sci Technol 203:41–52

    Google Scholar 

  • Hansen P, Areéchiga C (1999) Strategies for managing reproduction in the heat-stressed dairy cow. J Anim Sci 77:36–50

    PubMed  Google Scholar 

  • Harikumar S (2021) Evaluation of climatic variables to assess thermal stress in dairy cattle. Climate Smart Dairying in the Context of Global Warming. Conference Paper

    Google Scholar 

  • Hidosa D, Guyo M (2017) Climate change effects on livestock feed resources: a review. J Fish Livest Prod 5:259

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press

    Google Scholar 

  • Hook SE, Wright AD, Mcbride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010:945785

    PubMed  PubMed Central  Google Scholar 

  • Hoque MN, Talukder AK, Akter M, Shamsuddin M (2014) Evaluation of ovsynch protocols for timed artificial insemination in water buffaloes in Bangladesh. Turkish J Vet Anim Sci 38:418–424

    Google Scholar 

  • Howden SM, Crimp SJ, Stokes CJ (2008) Climate change and Australian livestock systems: impacts, research and policy issues. Aust J Exp Agric 48:780–788

    Google Scholar 

  • Hozyen HF, Ahmed HH, Essawy GES, Shalaby SIA (2014) Seasonal changes in some oxidant and antioxidant parameters during folliculogenesis in Egyptian buffalo. Anim Reprod Sci 151:131–136

    Google Scholar 

  • Huber JT, Higginbotham G, Gomez-Alarcon RA, Taylor RB, Chen KH, Chan SC, Wu Z (1994) Heat stress interactions with protein, supplemental fat, and fungal cultures. J Dairy Sci 77:2080–2090

    PubMed  Google Scholar 

  • Hyder I, Ravi Kanth Reddy P, Raju J, Manjari P, Srinivasa Prasad C, Aswani Kumar K, Sejian V (2017) Alteration in rumen functions and diet digestibility during heat stress in sheep. In: Sheep production adapting to climate change. Springer Publishing, pp 235–265

    Google Scholar 

  • Ingraham R, Kappel L, Morgan E, Babcock D (1982) Temperature-humidity vs. seasonal effects on concentrations of blood constituents of dairy cows during the pre-and postcalving periods: relationship to lactation level and reproductive functions. In: Proceedings of 2nd international livestock and environment symposium, American Society of Agricultural Engineers, St. Joseph. pp. 565–570

    Google Scholar 

  • Iqbal MF, Cheng Y-F, Zhu W-Y, Zeshan B (2008) Mitigation of ruminant methane production: current strategies, constraints and future options. World J Microbiol Biotechnol 24:2747–2755

    Google Scholar 

  • Ishimwe R, Abutaleb K, Ahmed F (2014) Applications of thermal imaging in agriculture: a review. Adv Remote Sens 3:128

    Google Scholar 

  • Jara IE, Keim JP, Arias RA (2016) Behaviour, tympanic temperature and performance of dairy cows during summer season in southern Chile. Archivos De Medicina Veterinaria 48(1):113–118

    Google Scholar 

  • Jeyakumar S, Kumaresan A, Kataktalware MA, Manimaran A, Ramesha K (2022) Infrared thermal imaging and its application in animal reproduction. In: Frontier Technologies in Bovine Reproduction. Springer Publishing, pp 47–64

    Google Scholar 

  • Jiang S, Yan FF, Hu JY, Mohammed A, Cheng HW (2021) Bacillus subtilis-based probiotic improves skeletal health and immunity in broiler chickens exposed to heat stress. Animals 11(6):1494

    PubMed  PubMed Central  Google Scholar 

  • Johnson D, Johnson K, Ward G, Branine M (2000) Ruminants and other animals. In: Khalil MAK (ed) Atmospheric methane: its role in the global environment. Springer-Verlag, Berlin, pp 112–133

    Google Scholar 

  • Johnson K, Westberg H, Lamb B, Kincaid R (2001) The use of sulphur hexafluoride for measuring methane emissions from farm animals. In: Proceedings of the 1st International Conference on Greenhouse Gases and Animal Agriculture, Obihiro. pp. 72–81

    Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492

    PubMed  Google Scholar 

  • Joy A, Dunshea FR, Leury BJ, Clarke IJ, Digiacomo K, Chauhan SS (2020) Resilience of small ruminants to climate change and increased environmental temperature: a review. Animals 10(5):867

    PubMed  PubMed Central  Google Scholar 

  • Kadzere CT, Murphy M, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77(1):59–91

    Google Scholar 

  • Kamal R, Dutt T, Patel M, Dey A, Bharti PK, Chandran PC (2018) Heat stress and effect of shade materials on hormonal and behavior response of dairy cattle: a review. Trop Anim Health Prod 50:701–706

    PubMed  Google Scholar 

  • Kasimanickam R, Kasimanickam V (2021) Impact of heat stress on embryonic development during first 16 days of gestation in dairy cows. Sci Rep 11:14839

    PubMed  PubMed Central  Google Scholar 

  • Kendall PE, Nielsen PP, Webster JR, Verkerk GA, Littlejohn RP, Matthews LR (2006) The effects of providing shade to lactating dairy cows in a temperate climate. Livest Sci 103:148–157

    Google Scholar 

  • Kimaro EG, Toribio J, Mor SM (2017) Climate change and cattle vector-borne diseases: use of participatory epidemiology to investigate experiences in pastoral communities in Northern Tanzania. Prev Vet Med 147:79–89

    PubMed  Google Scholar 

  • Kitching RP, Hutber AM, Thrusfield MV (2005) A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease. Vet J 169:197–209

    PubMed  Google Scholar 

  • Kljajevic NV, Tomasevic IB, Miloradovic ZN, Nedeljkovic A, Miocinovic JB, Jovanovic ST (2018) Seasonal variations of Saanen goat milk composition and the impact of climatic conditions. J Food Sci Technol 55:299–303

    PubMed  Google Scholar 

  • Knapp DM, Grummer RR (1991) Response of lactating dairy cows to fat supplementation during heat stress. J Dairy Sci 74:2573–2579

    PubMed  Google Scholar 

  • Koubkova M, Knizkova I, Kunc P, Hartlova H, Flusser J, Dolezal O (2002) Influence of high environmental temperatures and evaporative cooling on some physiological, hematological and biochemical parameters in high-yielding dairy cows. Czech J Anim Sci 47:309–318

    Google Scholar 

  • Kovács K, Szűcs I (2020) Exploring efficiency reserves in Hungarian milk production. Stud Agric Econ 122:Ritchie 37–43

    Google Scholar 

  • Krishnan G, Bagath M, Pragna P, Vidya MK, Aleena J, Archana PR, Sejian V, Bhatta R (2017) Mitigation of the heat stress impact in livestock reproduction. Theriogenology 8:8–9

    Google Scholar 

  • Kulanthaivelu RK, Iyyanar S, Ramakrishnan S (2022) Climate change and agricultural losses in India. Am J Econ Sociol 81:339–358

    Google Scholar 

  • Kumar D, Yadav B, Choudhury S, Kumari P, Madan AK, Singh SP, Rout P, Ramchandran N, Yadav S (2018) Evaluation of adaptability to different seasons in goat breeds of semi-arid region in India through differential expression pattern of heat shock protein genes. Biol Rhythm Res 49:466–478

    Google Scholar 

  • Kumar G, Devi P, Sharma N, Somagond YM (2020) Impact of thermal stress on milk production, composition and fatty acid profile in dairy cows: a review. J Entomol Zool Stud 5:1278–1283

    Google Scholar 

  • Kumar R, Kamra DN, Agarwal N, Chaudhary LC (2007) In vitro methanogenesis and fermentation of feeds containing oil seed cakes with rumen liquor of buffalo. Asian-Australas J Anim Sci 20:1196–1200

    Google Scholar 

  • Kumar S, Puniya AK, Puniya M, Dagar SS, Sirohi SK, Singh K, Griffith GW (2009) Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol 25:1557–1566

    Google Scholar 

  • Kunkle GA, Nicklin CF, Sullivan-Tamboe DL (2004) Comparison of body temperature in cats using a veterinary infrared thermometer and a digital rectal thermometer. J Am Anim Hosp Assoc 40:42–46

    PubMed  Google Scholar 

  • Lacetera N (2019) Impact of climate change on animal health and welfare. Anim Front 9:26–31

    PubMed  Google Scholar 

  • Lacetera N, Bernabucci U, Scalia D, Ronchi B, Kuzminsky G, Nardone A (2005) Lymphocyte functions in dairy cows in hot environment. Int J Biometeorol 50:105–110

    PubMed  Google Scholar 

  • Lallo CHO, Cohen J, Rankine D, Taylor M, Cambell J, Stephenson T (2018) Characterizing heat stress on livestock using the temperature humidity index (THI) prospects for a warmer Caribbean. Reg Environ Chang 18:2329–2340

    Google Scholar 

  • Lecchi C, Rota N, Vitali A, Ceciliani F, Lacetera N (2016) In vitro assessment of the effects of temperature on phagocytosis, reactive oxygen species production and apoptosis in bovine polymorphonuclear cells. Vet Immunol Immunopathol 182:89–94

    PubMed  Google Scholar 

  • Lees AM, Lees JC, Lisle AT, Sullivan ML, Gaughan JB (2018) Effect of heat stress on rumen temperature of three breeds of cattle. Int J Biometeorol 62:207–215

    PubMed  Google Scholar 

  • Lees AM, Sejian V, Wallage AL, Steel CC, Mader TL, Lees JC, Gaughan JB (2019a) The impact of heat load on cattle. Animals 9(6):322

    PubMed  PubMed Central  Google Scholar 

  • Lees AM, Sejian V, Lees JC, Sullivan ML, Lisle AT, Gaughan JB (2019b) Evaluating rumen temperature as an estimate of core body temperature in Angus feedlot cattle during summer. Int J Biometeorol 63:939–947

    PubMed  Google Scholar 

  • Li G, Chen S, Chen J, Peng D, Gu X (2020) Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress. J Dairy Sci 103:5466–5484

    PubMed  Google Scholar 

  • Li S, Gebremedhin KG, Lee CN, Collier RJ (2009) Evaluation of thermal stress indices for cattle. In: 2009 Reno, Nevada, June 21-June 24, 2009. American Society of Agricultural and Biological Engineers 1

    Google Scholar 

  • Lievaart JJ, Barkema HW, Kremer WD, Van Den Broek J, Verheijden JH, Heesterbeek JA (2007) Effect of herd characteristics, management practices, and season on different categories of the herd somatic cell count. J Dairy Sci 90:4137–4144

    PubMed  Google Scholar 

  • Lin J, Moss B, Koon J, Flood C, Smith Iii R, Cummins K, Coleman D (1998) Comparison of various fan, sprinkler, and mister systems in reducing heat stress in dairy cows. Appl Eng Agric 14:177–182

    Google Scholar 

  • Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, Pustovit RV, Fothergill LJ, Bravo DM, Celi P, Leury BJ, Gabler NK, Dunshea FR (2016) Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol 101:801–810

    PubMed  Google Scholar 

  • Liu Z, Ezernieks V, Wang J, Arachchillage NW, Garner J, Wales W, Cocks B, Rochfort S (2017) Heat stress in dairy cattle alters lipid composition of milk. Sci Rep 7:1–10

    Google Scholar 

  • Loholter M, Meyer U, Rauls C, Rehage J, Danicke S (2013) Effects of niacin supplementation and dietary concentrate proportion on body temperature, ruminal pH and milk performance of primiparous dairy cows. Arch Anim Nutr 67:202–218

    PubMed  Google Scholar 

  • López-Gatius F, Garcia-Ispierto I, Hunter RH (2021) Cervix–rectum temperature differential at the time of insemination is correlated with the potential for pregnancy in dairy cows. J Reprod Dev 67(4):251–255

    PubMed  PubMed Central  Google Scholar 

  • López-Gatius F, Santolaria P, Martino A, Delétang F, De Rensis F (2006) The effects of GnRH treatment at the time of AI and 12 days later on reproductive performance of high producing dairy cows during the warm season in northeastern Spain. Theriogenology 65:820–830

    PubMed  Google Scholar 

  • Lukas J, Reneau J, Linn J (2008) Water intake and dry matter intake changes as a feeding management tool and indicator of health and estrus status in dairy cows. J Dairy Sci 91:3385–3394

    PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    PubMed  PubMed Central  Google Scholar 

  • Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28:727–732

    Google Scholar 

  • Macheka LR, Olowoyo JO, Mugivhisa LL, Abafe OA (2021) Determination and assessment of human dietary intake of per and polyfluoroalkyl substances in retail dairy milk and infant formula from South Africa. Sci Total Environ 755:142697

    PubMed  Google Scholar 

  • Mackle TR, Bryant AM, Petch SF, Hill JP, Auldist MJ (1999) Nutritional influences on the composition of milk from cows of different protein phenotypes in New Zealand. J Dairy Sci 82:172–180

    PubMed  Google Scholar 

  • Mader T, Gaughan J, Young B, Albin R, Howes A (1999) Feedlot diet roughage level for Hereford cattle exposed to excessive heat load. Prof Anim Sci 15:53–62

    Google Scholar 

  • Mader TL, Davis MS (2004) Effect of management strategies on reducing heat stress of feedlot cattle: feed and water intake. J Anim Sci 82:3077–3087

    PubMed  Google Scholar 

  • Mader T, Johnson LJ, Gaughan JB (2010a) Components of the comprehensive climate index. J Anim Sci:2009–2586. http://jas.fass.org/content/early/2010/01/29/jas

  • Mader TL, Johnson LJ, Gaughan J (2010b) A comprehensive index for assessing environmental stress in animals. J Anim Sci 88(6):2153–2165

    PubMed  Google Scholar 

  • Madhusoodan A, Seijian V, Rashamol V, Savitha S, Bagath M, Krishnan G, Bhatta R (2019) Resilient capacity of cattle to environmental challenges–an updated review. J Anim Behav Biometeorol 7:104–118

    Google Scholar 

  • Magrin L, Brscic M, Lora I, Rumor C, Tondello L, Cozzi G, Gottardo F (2017) Effect of a ceiling fan ventilation system on finishing young bulls’ health, behaviour and growth performance. Animal 11:1084–1092

    PubMed  Google Scholar 

  • Malayer JR, Hansen PJ (1990) Differences between Brahman and Holstein cows in heat-Shock induced alterations of protein-synthesis and secretion by oviducts and uterine endometrium. J Anim Sci 68:266–280

    PubMed  Google Scholar 

  • Mannuthy T (2017) Behavioral responses to livestock adaptation to heat stress challenges. Asian J Anim Sci 11:1–13

    Google Scholar 

  • Marai I, Ayyat M, El-Monem A (2001) Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Trop Anim Health Prod 33:451–462

    PubMed  Google Scholar 

  • Marai IFM, Habeeb AA, Daader AH, Yousef HM (1995) Effects of Egyptian subtropical summer conditions and the heat-stress alleviation technique of water spray and a diaphoretic on the growth and physiological functions of Friesian calves. J Arid Environ 30:219–225

    Google Scholar 

  • Marchesini G, Cortese M, Mottaran D, Ricci R, Serva L, Contiero B, Segato S, Andrighetto I (2018) Effects of axial and ceiling fans on environmental conditions, performance and rumination in beef cattle during the early fattening period. Livest Sci 214:225–230

    Google Scholar 

  • Marciniak A (2014) The use of temperature-humidity index (THI) to evaluate temperature-humidity conditions in freestall barns. J Cent Eur Agric 15(2):73–83

    Google Scholar 

  • Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci 86:2642–2650

    PubMed  Google Scholar 

  • Martínez RS, Palladino RA, Banchero G, Fernández-Martín R, Nanni M, Juliano N, Iorio J, La Manna A (2021) Providing heat-stress abatement to late-lactation Holstein cows affects hormones, metabolite blood profiles, and hepatic gene expression but not productive responses. Appl Anim Sci 37:490–503

    Google Scholar 

  • Martzopoulou A, Firfiris V, Kotsopoulos T (2020) Application of urban passive cooling systems and design techniques in livestock buildings. In: IOP Conference Series. Environ Earth Sci 410(1):12029

    Google Scholar 

  • Mathers J, Baber R, Archibald R (1989) Intake, digestion and gastro-intestinal mean retention time in Asiatic buffaloes and Ayrshire cattle given two contrasting diets and housed at 20 and 33 C. J Agric Sci 113:211–222

    Google Scholar 

  • Mauger G, Bauman Y, Nennich T, Salathé E (2015) Impacts of climate change on milk production in the United States. Prof Geogr 67:121–131

    Google Scholar 

  • Mcallister T, Newbold C (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13

    Google Scholar 

  • Mcdermott JJ, Kristjanson PM, Kruska R, Reid RS, Robinson TP, Coleman P, Jones PG, Thornton PK (2002) Effects of climate, human population and socio-economic changes on tsetse-transmitted trypanosomiasis to 2050. In: The African trypanosomes. Springer Publishing, pp 25–38

    Google Scholar 

  • Mcginn S, Beauchemin K, Iwaasa A, Mcallister T (2006) Assessment of the sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle. J Environ Qual 35:1686–1691

    PubMed  Google Scholar 

  • Mcmanus C, Faria D, De Bem A, Maranhão A, Paiva S (2020, 2020) Physiology and genetics of heat stress in cattle. CABI Reviews 15

    Google Scholar 

  • Medeiros Dos Santos M, De Souza-Junior JBF, Dos Santos VJS, Castelo TDS, De Queiroz JPF, De Costa LLM (2021) Differences between times of day for the basic physiological traits of Nellore bulls exposed to solar radiation. Biol Rhythm Res 52:342–346

    Google Scholar 

  • Mehrotra S, Bardhan R, Ramamritham K (2019) Outdoor thermal performance of heterogeneous urban environment: an indicator-based approach for climate-sensitive planning. Sci Total Environ 669:872–886

    PubMed  Google Scholar 

  • Menke K, Raab L, Salewski A, Steingass H, Fritz D, Schneider W (1979) The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci 93:217–222

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  Google Scholar 

  • Mihm M, Curran N, Hyttel P, Knight PG, Boland MP, Roche JF (1999) Effect of dominant follicle persistence on follicular fluid oestradiol and inhibin and on oocyte maturation in heifers. J Reprod Fertil 116:293–304

    PubMed  Google Scholar 

  • Mirzad AN, Tada T, Ano H, Kobayashi I, Yamauchi T, Katamoto H (2018) Seasonal changes in serum oxidative stress biomarkers in dairy and beef cows in a daytime grazing system. J Vet Med 80:20–27

    Google Scholar 

  • Mishra S, Kundu A, Mahapatra A (2013) Effect of ambient temperature on membrane integrity of spermatozoa in different breeds of bulls. Bioscan 8:181–183

    Google Scholar 

  • Mishra SR (2021) Thermoregulatory responses in riverine buffaloes against heat stress: an updated review. J Therm Biol 96:102844

    PubMed  Google Scholar 

  • Misztal I (2017) Resilience and lessons from studies in genetics of heat stress. J Anim Sci 95(4):1780–1787

    PubMed  Google Scholar 

  • Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A (2018) Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J Anim Ecol 87:956–973

    PubMed  Google Scholar 

  • Mitlöhner FM, Morrow JL, Dailey JW, Wilson SC, Galyean ML, Miller MF, Mcglone JJ (2001) Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J Anim Sci 79:2327–2335

    PubMed  Google Scholar 

  • Mitra R, Christison GI, Johnson HD (1972) Effect of prolonged thermal exposure on growth hormone (GH) secretion in cattle. J Anim Sci 34(5):776–779

    PubMed  Google Scholar 

  • Monteiro LM, Alucci MP (2006) Calibration of outdoor thermal comfort models. In: International Conference on Passive and Low Energy Architecture. pp. 515–522

    Google Scholar 

  • Moore M (1988) Economic growth and the rise of civil society: agriculture in Taiwan and South Korea. Developmental States in East Asia. pp. 113–152

    Google Scholar 

  • Moore RB, Fuquay JW, Drapala WJ (1992) Effects of late gestation heat stress on postpartum milk production and reproduction in dairy cattle. J Dairy Sci 75:1877–1882

    PubMed  Google Scholar 

  • Moran D, Wall E (2011) Livestock production and greenhouse gas emissions: defining the problem and specifying solutions. Anim Front 1:19–25

    Google Scholar 

  • Morand S (2015) Impact of climate change on livestock disease occurrences. In: Climate change impact on livestock: adaptation and mitigation. Springer Publishing, pp 113–122

    Google Scholar 

  • Morgan ER, Wall R (2009) Climate change and parasitic disease: farmer mitigation? Trends Parasitol 25:308–313

    PubMed  Google Scholar 

  • Morse D, Delorenzo MA, Wilcox CJ, Collier RJ, Natzke RP, Bray DR (1988) Climatic effects on occurrence of clinical mastitis. J Dairy Sci 71:848–853

    PubMed  Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci U S A 104:19680–19685

    PubMed  PubMed Central  Google Scholar 

  • Moumen A, Azizi G, Chekroun KB, Baghour M (2016) The effects of livestock methane emission on the global warming: a review. Int J Glob Warm 9:229–253

    Google Scholar 

  • Mullie P, Pizot C, Autier P (2016) Daily milk consumption and all-cause mortality, coronary heart disease and stroke: a systematic review and meta-analysis of observational cohort studies. BMC Public Health 16:1–8

    Google Scholar 

  • Musharaf NA, Latshaw JD (1999) Heat increment as affected by protein and amino acid nutrition. Worlds Poult Sci J 55:233–240

    Google Scholar 

  • Naik B, Kumar AS, Ravi A, Bramhaiah K, Chakravarthi V (2013) Effect of seasons on physiological and hematological values in Punganur cattle. Int J Pharma Biol Sci 4(4):40–49

    Google Scholar 

  • Nanas I, Barbagianni M, Dadouli K, Dovolou E, Amiridis GS (2021) Ultrasonographic findings of the corpus luteum and the gravid uterus during heat stress in dairy cattle. Reprod Domest Anim 56(10):1329–1341

    PubMed  Google Scholar 

  • Nardone A, Lacetera N, Bernabucci U, Ronchi B (1997) Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J Dairy Sci 80(5):838–844

    PubMed  Google Scholar 

  • Nardone A, Ronchi B, Lacetera N, Bernabucci U (2006) Climatic effects on productive traits in livestock. Vet Res Commun 30:75

    Google Scholar 

  • Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U (2010) Effects of climate changes on animal production and sustainability of livestock systems. Livest Sci 130:57–69

    Google Scholar 

  • Nayan V, Onteru SK, Singh D (2012) Genomic technologies: a way forward for learning climate resilience through cellular responses to heat stress. In: Climate resilient livestock & production system. pp. 177–184

    Google Scholar 

  • Newbold C, López S, Nelson N, Ouda J, Wallace R, Moss A (2005) Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr 94:27–35

    PubMed  Google Scholar 

  • Newbold C, Ouda J, López S, Nelson N, Omed H, Wallace R, Moss A (2002) Propionate precursors as possible alternative electron acceptors to methane in ruminal fermentation. In: Greenhouse Gases and Animal Agriculture: Proceedings of the 1st International Conference on Greenhouse Gases and Animal Agriculture, Obihiro, 7–11 November, 2001. Elsevier Science BV, pp. 151–154

    Google Scholar 

  • Nguyen TTT, Bowman PJ, Haile-Mariam M, Nieuwhof GJ, Hayes BJ, Pryce JE (2017) Short communication: implementation of a breeding value for heat tolerance in Australian dairy cattle. J Dairy Sci 100:7362–7367

    PubMed  Google Scholar 

  • Nguyen TTT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ (2016) Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 99(4):2849–2862

    PubMed  Google Scholar 

  • Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, Killeen K, Grimm R (2006) A strategy for annotating the human milk glycome. J Agric Food Chem 54(20):7471–7480

    PubMed  Google Scholar 

  • O’mara FP (2011) The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim Feed Sci Technol 166:7–15

    Google Scholar 

  • Oakes GK, Walker AM, Ehrenkranz RA, Cefalo RC, Chez RA (1976) Uteroplacental blood-flow during hyperthermia with and without respiratory alkalosis. J Appl Physiol 41(2):197–201

    PubMed  Google Scholar 

  • Oleson KW, Monaghan A, Wilhelmi O, Barlage M, Brunsell N, Feddema J, Hu L, Steinhoff D (2015) Interactions between urbanization, heat stress, and climate change. Clim Change 129(3):525–541

    Google Scholar 

  • Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal Y (2015) Secondary metabolites of plants and their role: overview. Curr Trends Biotechnol Pharm 9(3):293–304

    Google Scholar 

  • Pandian SJ, Subramanian M, Vijayakumar G, Balasubramaniam GA, Sukumar K (2015) Therapeutic management of botulism in dairy cattle. Vet World 8(11):1305–1309

    PubMed  PubMed Central  Google Scholar 

  • Pankaj P, Ramana D, Pourouchottamane R, Naskar S (2013) Livestock management under changing climate scenario in India. World J Vet Sci 1(1):25–32

    Google Scholar 

  • Patel A (2013) Role of small ruminants for livelihood security under changing climate. In: Climate resilient livestock & production system

    Google Scholar 

  • Patra AK (2014) Trends and projected estimates of GHG emissions from Indian livestock in comparisons with GHG emissions from world and developing countries. Asian-Australas J Anim Sci 27(4):592

    PubMed  PubMed Central  Google Scholar 

  • Patra AK, Kamra DN, Agarwal N (2006) Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim Feed Sci Technol 128:276–291

    Google Scholar 

  • Payton RR, Romar R, Coy P, Saxton AM, Lawrence JL, Edwards JL (2004) Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro. Biol Reprod 71:1303–1308

    PubMed  Google Scholar 

  • Pedersen LD, Sorensen AC, Berg P (2009) Marker-assisted selection can reduce true as well as pedigree-estimated inbreeding. J Dairy Sci 92:2214–2223

    PubMed  Google Scholar 

  • Pell AN, Schofield P (1993) Computerized monitoring of gas production to measure forage digestion in vitro. J Dairy Sci 76:1063–1073

    PubMed  Google Scholar 

  • Pellet P (1990) Protein Wu requirements in humans. Am J Clin Nutr 51:723–737

    PubMed  Google Scholar 

  • Polsky L, Von Keyserlingk MA (2017) Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci 100:8645–8657

    PubMed  Google Scholar 

  • Pragna P, Sejian V, Bagath M, Krishnan G, Archana P, Soren N, Beena V, Bhatta R (2018) Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J Anim Physiol Anim Nutr 102:825–836

    Google Scholar 

  • Prasad RR, Dean MRU, Alungo B (2022) Climate change impacts on livestock production and possible adaptation and mitigation strategies in developing countries: a review. J Agric Sci 14(3). https://doi.org/10.5539/jas.v14n3p240

  • Priest J (2004) Encyclopedia of energy: temperature and its. Measurement:45–54. https://doi.org/10.1016/b0-12-176480-x/00082-6

  • Puchala R, Min BR, Goetsch AL, Sahlu T (2005) The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci 83:182–186

    PubMed  Google Scholar 

  • Pursley JR, Silcox RW, Wiltbank MC (1998) Effect of time of artificial insemination on pregnancy rates, calving rates, pregnancy loss, and gender ratio after synchronization of ovulation in lactating dairy cows. J Dairy Sci 81(8):2139–2144

    PubMed  Google Scholar 

  • Purusothaman M, Thiruvenkadan A, Karunanithi K (2008) Seasonal variation in body weight and mortality rate in Mecheri adult sheep. Livest Res Rural Develop 20(9):1–6

    Google Scholar 

  • Pusta D, Odagiu A, Ersek A, Paşca I (2003) The variation of triiodothyronine (T3) level in milking cows exposed to direct solar radiation. J Cent Eur Agric 4(4):307–312

    Google Scholar 

  • Putney DJ, Malayer JR, Gross TS, Thatcher WW, Hansen PJ, Drost M (1988) Heat stress-induced alterations in the synthesis and secretion of proteins and prostaglandins by cultured bovine conceptuses and uterine endometrium. Biol Reprod 39:717–728

    PubMed  Google Scholar 

  • Rakib MRH, Zhou M, Xu S, Liu Y, Khan MA, Han B, Gao J (2020) Effect of heat stress on udder health of dairy cows. J Dairy Res 87(3):315–321

    Google Scholar 

  • Rao MP, Davi NK, D’arrigo RD, Skees J, Nachin B, Leland C, Lyon B, Wang SY, Byambasuren O (2015) Dzuds, droughts, and livestock mortality in Mongolia. Environ Res Lett 10(7):074012

    Google Scholar 

  • Rashamol V, Sejian V, Pragna P, Lees A, Bagath M, Krishnan G, Gaughan J (2019) Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. Int J Biometeorol 63(9):1265–1281

    PubMed  Google Scholar 

  • Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R (2020) Physiological adaptability of livestock to heat stress: an updated review. J Anim Behav Biometeorol 6(3):62–71

    Google Scholar 

  • Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine J-L, Collier R (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(5):707–728

    PubMed  Google Scholar 

  • Reynolds CK, Tyrrell HF, Reynolds PJ (1991) Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: whole body energy and nitrogen balance and visceral heat production. J Nutr 121(7):994–1003

    PubMed  Google Scholar 

  • Rhoads M, Rhoads R, Vanbaale M, Collier R, Sanders S, Weber W, Crooker B, Baumgard L (2009) Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 92:1986–1997

    PubMed  Google Scholar 

  • Ribeiro DM, Salama AA, Vitor AC, Argüello A, Moncau CT, Santos EM, Caja G, De Oliveira JS, Balieiro JC, Hernández-Castellano LE (2020) The application of omics in ruminant production: a review in the tropical and sub-tropical animal production context. J Proteome 227:103905

    Google Scholar 

  • Riekerink RGMO, Barkema HW, Stryhn H (2007) The effect of season on somatic cell count and the incidence of clinical mastitis. J Dairy Sci 90:1704–1715

    Google Scholar 

  • Rivera JE, Chara J (2021) CH4 and N2O emissions from cattle excreta: a review of main drivers and mitigation strategies in grazing systems. Front Sustain Food Syst 5:657936. https://doi.org/10.3389/fsufs.2021.657936

    Article  Google Scholar 

  • Rivera RE, Christensen VL, Edens FW, Wineland MJ (2005) Influence of selenium on heat shock protein 70 expression in heat stressed Turkey embryos (Meleagris gallopavo). Comp Biochem Physiol A Mol Integr Physiol 142(4):427–432

    PubMed  Google Scholar 

  • Rivera RM, Kelley KL, Erdos GW, Hansen PJ (2003) Alterations in ultrastructural morphology of two-cell bovine embryos produced in vitro and in vivo following a physiologically relevant heat shock. Biol Reprod 69:2068–2077

    PubMed  Google Scholar 

  • Rodriguez-Martinez H (2007) Role of the oviduct in sperm capacitation. Theriogenology 68:138–146

    Google Scholar 

  • Roeder PL, Taylor WP (2002) Rinderpest. Vet Clin North Am Food Anim Pract 18:515–547

    PubMed  Google Scholar 

  • Rohilla P, Chand K (2004) Effect of supplemental feeding on growth of kids and milk yield of Marwari goats. Indian J Small Ruminants 10:143–146

    Google Scholar 

  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag 16:145–163

    Google Scholar 

  • Ronchi B, Stradaioli G, Verini-Supplizi A, Bernabucci U, Lacetera N, Accorsi PA, Nardone A, Seren E (2001) Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17 beta, LH, FSH, prolactin and cortisol in Holstein heifers. Livest Prod Sci 68:231–241

    Google Scholar 

  • Roth Z (2020) Influence of heat stress on reproduction in dairy cows physiological and practical aspects. J Anim Sci 98:80–87

    Google Scholar 

  • Roth Z, Arav A, Bor A, Zeron Y, Braw-Tal R, Wolfenson D (2001) Improvement of quality of oocytes collected in the autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction 122:737–744

    PubMed  Google Scholar 

  • Roth Z, Arav A, Braw-Tai R, Bor A, Wolfenson D (2002) Effect of treatment with follicle-stimulating hormone or bovine somatotropin on the quality of oocytes aspirated in the autumn from previously heat-stressed cows. J Dairy Sci 85:1398–1405

    PubMed  Google Scholar 

  • Russell JB, Houlihan AJ (2003) Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol Rev 27:65–74

    PubMed  Google Scholar 

  • Russell JB, Mantovani HC (2002) The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J Mol Microbiol Biotechnol 4:347–355

    PubMed  Google Scholar 

  • Russell JB, Strobel HJ (1989) Effect of ionophores on ruminal fermentation. Appl Environ Microbiol 55:1–6

    PubMed  PubMed Central  Google Scholar 

  • Ryan DP, Kopel E, Boland MP, Godke RA (1991) Pregnancy rates in dairy-cows following the administration of a Gnrh analog at the time of artificial-insemination or at mid-cycle post insemination. Theriogenology 36:367–377

    PubMed  Google Scholar 

  • Saied AA, El-Ghoneimy AA, Seddek AL, Abdel-Ghafar SK, Morad SA (2020) Therapeutic effectiveness of Ocimum basilicum extract on bovine cutaneous papillomatosis. Int J Vet Sci 3(2):60–77

    Google Scholar 

  • Samal L (2013) Heat stress in dairy cows-reproductive problems and control measures. Int J Livest Res 3:14–23

    Google Scholar 

  • Sánchez J, Misztal I, Aguilar I, Zumbach B, Rekaya R (2009) Genetic determination of the onset of heat stress on daily milk production in the US Holstein cattle. J Dairy Sci 92:4035–4045

    PubMed  Google Scholar 

  • Sanchez WK, Mcguire MA, Beede DK (1994) Macromineral nutrition by heat stress interactions in dairy cattle: review and original research. J Dairy Sci 77:2051–2079

    PubMed  Google Scholar 

  • Santos MM, Souza-Junior JBF, Dantas MRT, de Macedo Costa LL (2021) An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environ Sci Pollut Res 28(24):30471–30485

    Google Scholar 

  • Sauer FD, Fellner V, Kinsman R, Kramer JK, Jackson HA, Lee AJ, Chen S (1998) Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J Anim Sci 76:906–914

    PubMed  Google Scholar 

  • Schneider J, Van Vleck LD (1986) Heritability estimates for first lactation milk yield of registered and nonregistered Holstein cows. J Dairy Sci 69:1652–1655

    Google Scholar 

  • Schutz MM, Bewley JM (2009) Implications of changes in core body temperature. In: Tri-State Dairy Nutrition Conference. pp. 39–50

    Google Scholar 

  • Sejian V (2013) Climate change: impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: a review. Indian J Small Ruminants 19:1–21

    Google Scholar 

  • Sejian V, Bhatta R, Gaughan J, Malik PK, Naqvi S, Lal R (2017) Adapting sheep production to climate change. In: Sheep production adapting to climate change, pp. 1–29

    Google Scholar 

  • Sejian V, Bhatta R, Gaughan JB, Dunshea FR, Lacetera N (2018) Review: adaptation of animals to heat stress. Animal 12:431–444

    Google Scholar 

  • Sejian V, Bhatta R, Malik PK, Madiajagan B, Al-Hosni YAS, Sullivan M, Gaughan JB (2016) Livestock as sources of greenhouse gases and its significance to climate change. Greenhouse Gases 11:243–259

    Google Scholar 

  • Sejian V, Lakritz J, Ezeji T, Lal R (2011) Forage and flax seed impact on enteric methane emission in dairy cows. Res J Vet Sci 4:1–8

    Google Scholar 

  • Sejian V, Naqvi S, Ezeji T, Lakritz J, Lal R (2012a) Environmental stress and amelioration in livestock production. Springer Publishing

    Google Scholar 

  • Sejian V, Naqvi SMK (2012) Livestock and climate change: mitigation strategies to reduce methane production. In: Greenhouse gases-capturing, utilization and reduction, pp. 255–276

    Google Scholar 

  • Sejian V, Saumya B (2011) Enteric methane emissions in livestock: contributors, prediction, estimations and repercussion. NAIP sponsored national training manual on “Carbon sequestration, carbon trading and climate change”. Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, Avikanagar pp. 68–80

    Google Scholar 

  • Sejian V, Silpa M, Lees AM, Krishnan G, Devaraj C, Bagath M, Anisha J, Reshma Nair M, Manimaran A, Bhatta R (2021a) Opportunities, challenges, and ecological footprint of sustaining small ruminant production in the changing climate scenario. In: Agroecological footprints management for sustainable food system, pp. 365–396

    Google Scholar 

  • Sejian V, Shekhawat I, Ujor V, Ezeji T, Lakritz J, Lal R (2012b) Global climate change: enteric methane reduction strategies in livestock. In: Environmental stress and amelioration in livestock production, pp. 469–499

    Google Scholar 

  • Sejian V, Silpa MV, Reshma Nair MR, Devaraj C, Krishnan G, Bagath M, Chauhan SS, Suganthi RU, Fonseca VF, König S (2021b) Heat stress and goat welfare: adaptation and production considerations. Animals 11:1021

    PubMed  PubMed Central  Google Scholar 

  • Sejrsen K, Fitzgerald E, Tucker H, Huber J (1980) Effect of plane of nutrition on serum prolactin and insulin in pre-and post-pubertal heifers. J Dairy Sci 53:326–327

    Google Scholar 

  • Sexson JL, Wagner JJ, Engle TE, Eickhoff J (2012) Predicting water intake by yearling feedlot steers. J Anim Sci 90(6):1920–1928

    PubMed  Google Scholar 

  • Shabankareh HK, Habibizad J, Sarsaifi K, Cheghamirza K, Jasemi VK (2010a) The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum oestradiol concentrations during the estrous cycle in Sanjabi ewes. Small Rumin Res 93:180–185

    Google Scholar 

  • Shabankareh HK, Zandi M, Ganjali M (2010b) First service pregnancy rates following post-AI use of HCG in Ovsynch and Heatsynch programmes in lactating dairy cows. Reprod Domest Anim 45:711–716

    PubMed  Google Scholar 

  • Shahat AM, Rizzoto G, Kastelic JP (2020) Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 158:84–96

    PubMed  Google Scholar 

  • Sheikh AA, Bhagat R, Islam ST, Dar RR, Sheikh SA, Wani JM, Dogra P (2017) Effect of climate change on reproduction and milk production performance of livestock: a review. J Pharmacogn Phytochem 6:2062–2064

    Google Scholar 

  • Shine P, Scully T, Upton J, Shalloo L, Murphy MD (2018) Electricity & direct water consumption on Irish pasture based dairy farms: a statistical analysis. Appl Energy 210:529–537

    Google Scholar 

  • Shock DA, LeBlanc SJ, Leslie KE, Hand K, Godkin MA, Coe JB, Kelton DF (2015) Exploring the characteristics and dynamics of Ontario dairy herds experiencing increases in bulk milk somatic cell count during the summer. J Dairy Sci 98(6):3741–3753

    PubMed  Google Scholar 

  • Shome R, Deka RP, Sahay S, Grace D, Lindahl JF (2019) Seroprevalence of hemorrhagic septicemia in dairy cows in Assam. India Infect Ecol Epidemiol 9(1):1604064

    PubMed  Google Scholar 

  • Shreyash N, Sonker M, Bajpai S, Tiwary SK, Khan MA, Raj S, Sharma T, Biswas S (2021) The review of carbon capture-storage technologies and developing fuel cells for enhancing utilization. Energies 14:4978

    Google Scholar 

  • Shwartz G, Rhoads ML, Vanbaale MJ, Rhoads RP, Baumgard LH (2009) Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J Dairy Sci 92:935–942

    PubMed  Google Scholar 

  • Sievers AK, Kristensen NB, Laue HJ, Wolffram S (2004) Development of an intraruminal device for data sampling and transmission, pp. 207–210

    Google Scholar 

  • Silanikove N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67:1–18

    Google Scholar 

  • Silva MVB, Dos Santos DJA, Boison SA, Utsunomiya ATH, Carmo AS, Sonstegard TS, Cole JB, Van Tassell CP (2014) The development of genomics applied to dairy breeding. Livest Sci 166:66–75

    Google Scholar 

  • Singh B (2010) Some nutritional strategies for mitigation of methane emissions. In: International conference on “Physiological capacity building in livestock under changing climate scenario”. Physiology and Climatology division, Indian Veterinary Research Institute, Izatnagar. pp. 11–13

    Google Scholar 

  • Singh SP, Kumar A, Sourya N (2021) Effects of heat stress on animal reproduction. Int J Fauna Biol Sci 8:16–20

    Google Scholar 

  • Skinner JD, Louw GN (1966) Heat stress and spermatogenesis in Bos indicus and Bos taurus cattle. J Appl Physiol 21(6):1784–1790

    PubMed  Google Scholar 

  • Storm IM, Hellwing ALF, Nielsen NI, Madsen J (2012) Methods for measuring and estimating methane emission from ruminants. Animals 2:160–183

    PubMed  PubMed Central  Google Scholar 

  • Suberu O, Ajala O, Akande M, Olure-Bank A (2015) Diversification of the Nigerian economy towards a sustainable growth and economic development. Int J Econ Financ Manag Sci 3:107–114

    Google Scholar 

  • Tahmasbi AM, Kazemi M, Moheghi MM, Bayat J, Shahri A (2012) Effects of selenium and vitamin E and night or day feeding on performance of Holstein dairy cows during hot weather. J Cell Anim Biol 6:33–40

    Google Scholar 

  • Tao S, Dahl G (2013) Invited review: heat stress effects during late gestation on dry cows and their calves. J Dairy Sci 96:4079–4093

    Google Scholar 

  • Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 123:403–419

    Google Scholar 

  • Temim S, Chagneau AM, Peresson R, Tesseraud S (2000) Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. J Nutr 130:813–819

    PubMed  Google Scholar 

  • Theodorou MK, Williams BA, Dhanoa MS, Mcallan AB, France J (1994) A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed SciTechnol 48:185–197

    Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12:57–60

    Google Scholar 

  • Thornton PK, Van De Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127

    Google Scholar 

  • Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, Wang J (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep 6:24208

    PubMed  PubMed Central  Google Scholar 

  • Tiemann TT, Lascano CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD (2008) Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790–799

    PubMed  Google Scholar 

  • Timlin M, Tobin JT, Brodkorb A, Murphy EG, Dillon P, Hennessy D, O’Donovan M, Pierce KM, O’Callaghan TF (2021) The impact of seasonality in pasture-based production systems on milk composition and functionality. Foods 10:607

    PubMed  PubMed Central  Google Scholar 

  • Tubiello FN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C (2007) Crop response to elevated CO2 and world food supply - A comment on “Food for Thought...” by Long et al. Science 312: 1918-1921, 2006. Eur J Agron 26:215–223

    Google Scholar 

  • Turner L, Chastain J, Hemken R, Gates R, Crist W (1992) Reducing heat stress in dairy cows through sprinkler and fan cooling. Appl Eng Agric 8:251–256

    Google Scholar 

  • Upadhyay R, Singh S, Kumar A, Gupta S, Ashutosh (2007) Impact of climate change on milk production of Murrah buffaloes. Ital J Anim Sci 6:1329–1332.

    Google Scholar 

  • Useh N, Nok A, Esievo K (2006) Blackleg in ruminants. CABI Rev 2006:8 pp

    Google Scholar 

  • Valente EEL, Chizzotti ML, De Oliveira CVR, Galvao MC, Domingues SS, Rodrigues AD, Ladeira MM (2015) Intake, physiological parameters and behavior of Angus and Nellore bulls subjected to heat stress. Semina: Cienc Agrar 36(6):4565–4574

    Google Scholar 

  • Van Dijk J, Sargison N, Kenyon F, Skuce P (2010) Climate change and infectious disease: helminthological challenges to farmed ruminants in temperate regions. Animal 4:377–392

    PubMed  Google Scholar 

  • Vanderwaal RP, Maggi LB Jr, Weber JD, Hunt CR, Roti Roti JL (2009) Nucleophosmin redistribution following heat shock: a role in heat-induced radiosensitization. Cancer Res 69:6454–6462

    PubMed  PubMed Central  Google Scholar 

  • Vitt R, Weber L, Zollitsch W, Hortenhuber SJ, Baumgartner J, Niebuhr K, Piringer M, Anders I, Andre K, Hennig-Pauka I, Schonhart M, Schauberger G (2017) Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosyst Eng 164:85–97

    Google Scholar 

  • Wagoner RS, López-Gálvez NI, De Zapien JG, Griffin SC, Canales RA, Beamer PI (2020) An occupational heat stress and hydration assessment of agricultural workers in North Mexico. Int J Environ Res Public Health 17:2102

    PubMed  PubMed Central  Google Scholar 

  • Wahrmund JL, Ronchesel JR, Krehbiel CR, Goad CL, Trost SM, Richards CJ (2012) Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. J Anim Sci 90:2794–2801

    PubMed  Google Scholar 

  • Wang J, Li J, Wang F, Xiao J, Wang Y, Yang H, Cao Z (2020) Heat stress on calves and heifers: a review. J Anim Sci Biotechnol 11(1):1–8

    Google Scholar 

  • Weller JI, Ezra E, Ron M (2017) Invited review: a perspective on the future of genomic selection in dairy cattle. J Dairy Sci 100:8633–8644

    PubMed  Google Scholar 

  • West JW (1999) Nutritional strategies for managing the heat-stressed dairy cow. J Anim Sci 77:21–35

    PubMed  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144

    PubMed  Google Scholar 

  • Wettemann RP, Bazer FW (1985) Influence of environmental temperature on prolificacy of pigs. J Reprod Fertil Suppl 33:199–208

    PubMed  Google Scholar 

  • Williams JL (2005) The use of marker-assisted selection in animal breeding and biotechnology. Rev Sci Tech 24:379–391

    PubMed  Google Scholar 

  • Wilson JR, Deinum B, Engels FM (1991) Temperature effects on anatomy and digestibility of leaf and stem of tropical and temperate forage species. Neth J Agri Sci 39:31–48

    Google Scholar 

  • Wilson SJ, Marion RS, Spain JN, Spiers DE, Keisler DH, Lucy MC (1998) Effects of controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J Dairy Sci 81:2124–2131

    PubMed  Google Scholar 

  • Winfield CG, Hemsworth PH, Galloway DB, Makin AW (1981) Sexual-behavior and semen characteristics of boars - effects of high-temperature. Aust J Exp Agric 21:39–45

    Google Scholar 

  • Wise ME, Rodriguez RE, Armstrong DV, Huber JT, Wiersma F, Hunter R (1988) Fertility and hormonal responses to temporary relief of heat stress in lactating dairy cows. Theriogenology 29:1027–1035

    PubMed  Google Scholar 

  • Wolfenson D, Flamenbaum I, Berman A (1988) Hyperthermia and body energy store effects on estrous behavior, conception rate, and corpus luteum function in dairy cows. J Dairy Sci 71:3497–3504

    PubMed  Google Scholar 

  • Wolfenson D, Inbar G, Roth Z, Kaim M, Bloch A, Braw-Tal R (2004) Follicular dynamics and concentrations of steroids and gonadotropins in lactating cows and nulliparous heifers. Theriogenology 62:1042–1055

    PubMed  Google Scholar 

  • Wolfenson D, Lew BJ, Thatcher WW, Graber Y, Meidan R (1997) Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Anim Reprod Sci 47:9–19

    PubMed  Google Scholar 

  • Wolfenson D, Roth Z (2019) Impact of heat stress on cow reproduction and fertility. Anim Front 9(1):32–38

    PubMed  Google Scholar 

  • Wolfenson D, Roth Z, Meidan R (2000) Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim Reprod Sci 60:535–547

    PubMed  Google Scholar 

  • Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265

    PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    PubMed  Google Scholar 

  • Xiong Q, Chai J, Xiong H, Li W, Huang T, Liu Y, Suo X, Zhang N, Li X, Jiang S, Chen M (2013) Association analysis of HSP70A1A haplotypes with heat tolerance in Chinese Holstein cattle. Cell Stress Chaperones 18:18711–18718

    Google Scholar 

  • Yadav B, Singh G, Verma A, Dutta N, Sejian V (2013) Impact of heat stress on rumen functions. Vet World 6:992

    Google Scholar 

  • Yadav B, Singh G, Wankar A, Dutta N, Chaturvedi VB, Verma MR (2016) Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle. Asian-Australas J Anim Sci 29:1585–1592

    PubMed  PubMed Central  Google Scholar 

  • Yamada A, Sutoh M, Imura T (2001) The changes of rumen temperature with grazing behavior in the daytime. J Jap Soc Grassl Sci (Japan) 47(5):491–493

    Google Scholar 

  • Yan T, Agnew RE, Gordon FJ, Porter MG (2000) Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest Prod Sci 64:253–263

    Google Scholar 

  • Young B (1981) Cold stress as it affects animal production. J Anim Sci 52:154–163

    PubMed  Google Scholar 

  • Yue S, Ding S, Zhou J, Yang C, Hu X, Zhao X, Wang Z, Wang L, Peng Q, Xue B (2020) Metabolomics approach explore diagnostic biomarkers and metabolic changes in heat-stressed dairy cows. Animals 10:1741

    PubMed  PubMed Central  Google Scholar 

  • Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A (2001) Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 121:447–454

    PubMed  Google Scholar 

  • Zhang Z, Zhang H, Liu T (2019) Study on body temperature detection of pig based on infrared technology: a review. Artif Intell Agric 1:14–26

    Google Scholar 

  • Zhengkang H, Zhenzhong C, Shaohua Z, Vale W, Barnabe V, Mattos J (1994) Rumen metabolism, blood cortisol and T3, T4 levels and other physiological parameters of swamp buffalo subjected to solar radiation. In: Proceedings of World Buffalo Congress, San Paulo, Brazil, pp 39–40

    Google Scholar 

  • Zhou J, Jiang M, Chen G (2007) Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy 35:3759–3767

    Google Scholar 

  • Zolini AM, Ortiz WG, Estrada-Cortes E, Ortega MS, Dikmen S, Sosa F, Giordano JO, Hansen PJ (2019) Interactions of human chorionic gonadotropin with genotype and parity on fertility responses of lactating dairy cows. J Dairy Sci 102:846–856

    PubMed  Google Scholar 

Download references

Author Contributions

Conceptualization and outline preparation: DH; original draft manuscript preparation: DH, NR and AHMMU, MRK; manuscript review and editing: MRK, NU, SZTB, AHMMU, and DH; figure preparation: DH and AHMMU, Figs. 42.1, 42.5, 42.6, 42.7, 42.15, and 42.16 created with BioRender.com and Figs. 42.2, 42.3, 42.4, 42.8, 42.9, 42.10, 42.11, 42.13, and 42.14 created with Microsoft PowerPoint; table preparation: DH, AHMMU, and NR. All authors have read and agreed to the published version of the book chapter.

Conflicts of Interest

The authors declare no conflict of interest.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delower Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, D., Rahman, N., Karim, M.R., Bristi, S.Z.T., Uddin, N., Uddin, A.H.M.M. (2023). Climate Resilient Livestock Production System in Tropical and Subtropical Countries. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-37424-1_42

Download citation

Publish with us

Policies and ethics