Skip to main content

From Pixels to Diagnosis: AI-Driven Skin Lesion Recognition

  • Chapter
  • First Online:
Advances in Smart Healthcare Paradigms and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 244))

  • 103 Accesses

Abstract

Skin cancer is a serious public health problem with a sharply increasing incidence in recent years, which has a major impact on quality of life and can be disfiguring or even fatal. Deep learning techniques can be used to analyze dermoscopic images, resulting in automated systems that can improve the clinical confidence of the diagnosis – also avoiding unnecessary surgery – help clinicians objectively communicate its outcome, reduce errors related to human fatigue, and cut costs affecting the health system. In this chapter, we present an entire pipeline to analyze skin lesion images in order to distinguish nevi from melanomas, also integrating patient clinical data to reach a diagnosis. Furthermore, to make our artificial intelligence tool explainable for both clinicians and patients, dermoscopic images are further processed to obtain their segmented counterparts, where the lesion contour is easily observable, and saliency maps, highlighting the areas of the lesion that prompted the classifier to make its decision. Experimental results are promising and have been positively evaluated by human experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://challenge.isic-archive.com/task/49/.

  2. 2.

    Publicy available at https://simonebonechi.github.io/downloads/isic_wsm.

  3. 3.

    In May 2018, a uniform data law was approved for all 27 EU member states, aimed at protecting the privacy of European citizens on digital infrastructures around the world, called General Data Protection Regulation.

References

  1. Alber, M., Lapuschkin, S., Seegerer, P., Hägele, M., Schütt, K.T., Montavon, G., Samek, W., Müller, K.R., Dähne, S., Kindermans, P.J.: iNNvestigate neural networks! J. Mach. Learn. Res. 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  2. Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A., Di Massa, V.: Automatic image classification for the urinoculture screening. In: Intelligent Decision Technologies: proceedings of the 7th KES International Conference on Intelligent Decision Technologies (KES-IDT 2015), pp. 31–42. Springer (2015)

    Google Scholar 

  3. Andreini, P., Ciano, G., Bonechi, S., Graziani, C., Lachi, V., Mecocci, A., Sodi, A., Scarselli, F., Bianchini, M.: A two-stage GAN for high-resolution retinal image generation and segmentation. Electronics 11(1), 60 (2021)

    Article  Google Scholar 

  4. Bonechi, S.: A weakly supervised approach to skin lesion segmentation. In: ESANN 2022 Proceedings European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2022)

    Google Scholar 

  5. Bonechi, S.: ISIC_WSM: generating weak segmentation maps for the ISIC archive. Neurocomputing 523, 69–80 (2023)

    Article  Google Scholar 

  6. Bonechi, S., Andreini, P., Bianchini, M., Scarselli, F.: Generating bounding box supervision for semantic segmentation with deep learning. In: IAPR Workshop on Artificial Neural Networks in Pattern Recognition, pp. 190–200. Springer (2018)

    Google Scholar 

  7. Bonechi, S., Andreini, P., Mecocci, A., Giannelli, N., Scarselli, F., Neri, E., Bianchini, M., Dimitri, G.M.: Segmentation of aorta 3D CT images based on 2D convolutional neural networks. Electronics 10(20), 2559 (2021)

    Article  Google Scholar 

  8. Bonechi, S., Bianchini, M., Bongini, P., Ciano, G., Giacomini, G., Rosai, R., Tognetti, L., Rossi, A., Andreini, P.: Fusion of visual and anamnestic data for the classification of skin lesions with deep learning. In: International Conference on Image Analysis and Processing, pp. 211–219. Springer (2019)

    Google Scholar 

  9. Bonechi, S., Bianchini, M., Mecocci, A., Scarselli, F., Andreini, P.: Segmentation of Petri plate images for automatic reporting of urine culture tests. In: Handbook of Artificial Intelligence in Healthcare, pp. 127–151. Springer (2022)

    Google Scholar 

  10. Bonechi, S., Bianchini, M., Scarselli, F., Andreini, P.: Weak supervision for generating pixel-level annotations in scene text segmentation. Pattern Recogn. Lett. 138, 1–7 (2020)

    Article  Google Scholar 

  11. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal Mach Intell 40(4), 834–848 (2017)

    Article  Google Scholar 

  12. Chéron, G., Laptev, I., Schmid, C.: P-CNN: pose—Based CNN features for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3218–3226 (2015)

    Google Scholar 

  13. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the International Skin Imaging Collaboration (ISIC) (2019). arXiv:1902.03368

  14. Domingues, B., Lopes, J.M., Soares, P., Pópulo, H.: Melanoma treatment in review. ImmunoTargets. Therapy 7, 35–49 (2018)

    Google Scholar 

  15. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press Ltd. (2016)

    Google Scholar 

  17. Grote, T., Keeling, G.: Enabling fairness in healthcare through machine learning. Ethics Inf. Technol. 24(39) (2022)

    Google Scholar 

  18. Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z., Cheng, M.M., Hu, S.M.: SegNeXt: rethinking convolutional attention design for semantic segmentation (2022). arXiv:2209.08575

  19. Hasan, M.K., Elahi, M.T.E., Alam, M.A., Jawad, M.T., Martí, R.: DermoExpert: skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. Inform. Med. Unlock. 100819 (2022)

    Google Scholar 

  20. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. ISIC: SIIM–ISIC 2020 challenge dataset (2020). https://challenge2020.isic-archive.com/

  23. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2, 305–311 (2020)

    Article  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  25. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  27. Nie, Y., Sommella, P., Carratù, M., Ferro, M., O’Nils, M., Lundgren, J.: Recent advances in diagnosis of skin lesions using dermoscopic images based on deep learning. IEEE Access 10, 95716–95747 (2022)

    Article  Google Scholar 

  28. Oneto, L., Navarin, N., Biggio, B., Errica, F., Micheli, A., Scarselli, F., Bianchini, M., Demetrio, L., Bongini, P., Tacchella, A., Sperduti, A.: Towards learning trustworthily, automatically, and with guarantees on graphs: an overview. Neurocomputing 493, 217–243 (2022)

    Article  Google Scholar 

  29. Papandreou, G., Kokkinos, I., Savalle, P.A.: Untangling local and global deformations in deep convolutional networks for image classification and sliding window detection (2014). arXiv:1412.0296

  30. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018). arXiv:1804.02767

  31. Rodriguez, D., Nayak, T., Chen, Y., Krishnan, R., Huang, Y.: On the role of deep learning model complexity in adversarial robustness for medical images. BMC Med. Inform. Decis. Making 22(Suppl 2)(160) (2022)

    Google Scholar 

  32. Rossi, A., Vannuccini, G., Andreini, P., Bonechi, S., Giacomini, G., Scarselli, F., Bianchini, M.: Analysis of brain NMR images for age estimation with deep learning. Procedia Comput. Sci. 159, 981–989 (2019)

    Article  Google Scholar 

  33. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad—CAM: Visual explanations from deep networks via gradient—Based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  34. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net (2014). arXiv:1412.6806

  35. Thapar, P., Rakhra, M., Cazzato, G., Hossain, M.S.: A novel hybrid deep learning approach for skin lesion segmentation and classification. J. Healthc. Eng. 2022 (2022)

    Google Scholar 

  36. Tognetti, L., Bonechi, S., Andreini, P., Bianchini, M., Scarselli, F., Cevenini, G., Moscarella, E., Farnetani, F., Longo, C., Lallas, A., et al.: A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. J. Dermatol. Sci. 101(2), 115–122 (2021)

    Article  Google Scholar 

  37. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  38. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Bianchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchini, M., Andreini, P., Bonechi, S. (2023). From Pixels to Diagnosis: AI-Driven Skin Lesion Recognition. In: Kwaśnicka, H., Jain, N., Markowska-Kaczmar, U., Lim, C.P., Jain, L.C. (eds) Advances in Smart Healthcare Paradigms and Applications. Intelligent Systems Reference Library, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-37306-0_6

Download citation

Publish with us

Policies and ethics