Skip to main content

Bi-homogeneous Differentiators

  • Chapter
  • First Online:
Sliding-Mode Control and Variable-Structure Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 490))

  • 393 Accesses

Abstract

In many applications, it is important to be able to estimate online some number of derivatives of a given (differentiable) signal. Some famous algorithms solving the problem comprise linear high-gain observers and Levant’s exact differentiators, that is discontinuous. They are both homogeneous, as are many other ones. A disadvantage of continuous algorithms is that they are able to calculate exactly the derivatives only for a very small class of (polynomial) time signals. The discontinuous Levant’s differentiator, in contrast, can calculate in finite-time and exactly the derivatives of Lipschitz signals, which is a much larger class. However, it has the drawback that its convergence time increases very strongly with the size of the initial conditions. Thus, a combination of both algorithms seems advantageous, and this has been proposed recently by the author in [38]. In this work, some techniques used to design differentiators are reviewed and it is shown how the combination of two different homogeneous algorithms can be realized and that it leads to interesting properties. A novelty is the derivation of a very simple realization of the family of bi-homogeneous differentiators proposed in [38]. The methodological framework is based on the use of smooth Lyapunov functions to carry out their performance and convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that these relations do not imply that \(\varphi _{i}\) and \(\phi _{i}\) are homogeneous of degree one, because this equality is not valid for arbitrary (positive) constants multiplying s but only for the ratio \(\frac{\alpha }{L^{n}}\), which is used in the definition of \(\varphi _{i}\). Functions \(\varphi _{i}\) and \(\phi _{i}\) are bi-homogeneous.

References

  1. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angulo, M., Moreno, J., Fridman, L.: Robust exact uniformly convergent arbitrary order differentiator. Automatica 49(8), 2489–2495 (2013). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84882456671 &doi=10.1016%2fj.automatica.2013.04.034 &partnerID=40 &md5=80ffefa4d941ca719509c0af8cbc2c75

  3. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd edn. Springer, New York (2005)

    Google Scholar 

  4. Barbot, J.-P., Levant, A., Livne, M., Lunz, D.: Discrete differentiators based on sliding modes. Automatica 112, 108633 (2020). https://doi.org/10.1016/j.automatica.2019.108633

  5. Bartolini, G., Pisano, A., Usai, E.: First and second derivative estimation by sliding mode technique. J. Signal Process. 4(2), 167–176 (2000)

    Google Scholar 

  6. Bejarano, F., Fridman, L.: High order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Control 83(9), 1920–1929 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On an extension of homogeneity notion for differential inclusions. In: European Control Conference, pp. 2204–2209, Zurich, Switzerland, Jul 2013. https://doi.org/10.23919/ECC.2013.6669525

  8. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On homogeneity and its application in sliding mode control. J. Frankl. Inst. 351(4), 1816–1901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhat, S., Bernstein, D.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cruz-Zavala, E., Moreno, J.A.: Lyapunov functions for continuous and discontinuous differentiators. IFAC-PapersOnLine 49(18), 660–665 (2016). ISSN 2405-8963. https://doi.org/10.1016/j.ifacol.2016.10.241, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009178451 &doi=10.1016%2fj.ifacol.2016.10.241 &partnerID=40 &md5=b84dbc58796bd53dab550d5ff67f507d. 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016

  11. Cruz-Zavala, E., Moreno, J.A.: Levant’s arbitrary order exact differentiator: a Lyapunov approach. IEEE Trans. Autom. Control 64(7), 3034–3039 (2019). ISSN 0018-9286. https://doi.org/10.1109/TAC.2018.2874721

  12. Cruz-Zavala, E., Moreno, J.A.: High-order sliding-mode control design homogeneous in the bi-limit. Int. J. Robust Nonlinear Control 31(19), 3380–3416 (2021). https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.5242

  13. Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform robust exact differentiator. In: Proceedings of the IEEE Conference on Decision and Control, pp. 102–107 (2010). https://doi.org/10.1109/CDC.2010.5717345, https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953148717 &doi=10.1109%2fCDC.2010.5717345 &partnerID=40 &md5=a8ca3cb846757ef88811074731eacd7a

  14. Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform robust exact differentiator. IEEE Trans. Autom. Control 56(11), 2727–2733 (2011). https://doi.org/10.1109/TAC.2011.2160030, https://www.scopus.com/inward/record.uri?eid=2-s2.0-80455150105 &doi=10.1109%2fTAC.2011.2160030 &partnerID=40 &md5=0545a8c7c1b07d7cb54f996107366654

  15. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Efimov, D., Fridman, L.: A hybrid robust non-homogeneous finite-time differentiator. IEEE Trans. Autom. Control 56, 1213–1219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Filippov, A.: Differential Equations with Discontinuous Righthand Side. Kluwer, Dordrecht, The Netherlands (1988)

    Book  Google Scholar 

  18. Floquet, T., Barbot, J.P.: Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs. Int. J. Syst. Sci. 38(10), 803–815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fraguela, L., Angulo, M., Moreno, J., Fridman, L.: Design of a prescribed convergence time uniform robust exact observer in the presence of measurement noise. In: Proceedings of the IEEE Conference on Decision and Control, pp. 6615–6620 (2012). https://doi.org/10.1109/CDC.2012.6426147, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874276290 &doi=10.1109%2fCDC.2012.6426147 &partnerID=40 &md5=a79989cfdc846f1c56b5d46b2b33220c

  20. Hanan, A., Levant, A., Jbara, A.: Low-chattering discretization of homogeneous differentiators. IEEE Trans. Autom. Control 67(6), 2946–2956 (2022). https://doi.org/10.1109/TAC.2021.3099446

  21. Hautus, M.: Strong detectability and observers. Linear Algebra Appl. 50, 353–368 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jbara, A., Levant, A., Hanan, A.: Filtering homogeneous observers in control of integrator chains. Int. J. Robust Nonlinear Control 31(9), 3658–3685 (2021). https://doi.org/10.1002/rnc.5295, https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.5295

  23. Khalil, H.K.: High-Gain Observers in Nonlinear Feedback Control. Advances in Design and Control, vol. 31. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Google Scholar 

  24. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24, 993–1015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kobayashi, S., Suzuki, S., Furuta, K.: Frequency characteristics of Levant’s differentiator and adaptive sliding mode differentiator. Int. J. Syst. Sci. 38(10), 825–832 (2007)

    Article  MATH  Google Scholar 

  26. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Levant, A.: High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76(9), 924–941 (2003)

    Article  MATH  Google Scholar 

  28. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41, 823–830 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levant, A.: On fixed and finite time stability in sliding mode control. In: 52nd IEEE Conference on Decision and Control, Firenze, Italy, pp. 4260–4265 (2013). https://doi.org/10.1109/CDC.2013.6760544

  30. Levant, A., Efimov, D., Polyakov, A., Perruquetti, W.: Stability and robustness of homogeneous differential inclusions. In: Proceedings of the IEEE Conference on Decision and Control, pp. 7288–7293 (2016)

    Google Scholar 

  31. Lopez-Ramirez, F., Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time observer design: implicit Lyapunov function approach. Automatica 87, 52–60 (2018). ISSN 0005-1098. https://doi.org/10.1016/j.automatica.2017.09.007, http://www.sciencedirect.com/science/article/pii/S0005109817304776

  32. Ménard, T., Moulay, E., Perruquetti, W.: Fixed-time observer with simple gains for uncertain systems. Automatica 81, 438–446 (2017). ISSN 0005-1098. https://doi.org/10.1016/j.automatica.2017.04.009, https://www.sciencedirect.com/science/article/pii/S0005109817301826

  33. Moreno, J.A.: A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2009, pp. 12–17 (2009). https://doi.org/10.1109/ICEEE.2009.5393477, https://www.scopus.com/inward/record.uri?eid=2-s2.0-77949821085 &doi=10.1109%2fICEEE.2009.5393477 &partnerID=40 &md5=b6163128ddd41d9a603b5c6182f39be9

  34. Moreno, J.A.: Lyapunov approach for analysis and design of second order sliding mode algorithms. In: Fridman, L., Moreno, J., Iriarte, R. (eds.) Sliding Modes After the First Decade of the 21st Century, LNCIS, vol. 412, pp. 113–150. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22164-4_4, https://www.scopus.com/inward/record.uri?eid=2-s2.0-81355142043 &doi=10.1007/978-3-642-22164-4_4 &partnerID=40 &md5=3e95ff994d7ee607e3f8ef2c7486261a

  35. Moreno, J.A.: Lyapunov function for Levant’s second order differentiator. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 6448–6453, Dec 2012. https://doi.org/10.1109/CDC.2012.6426877, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874252832 &doi=10.1109%2fCDC.2012.6426877 &partnerID=40 &md5=1a5389eb65b5b948c0fa5bf42d4e2863

  36. Moreno, J.A.: On discontinuous observers for second order systems: properties, analysis and design. In: Bandyopadhyay, B., Janardhanan, S., Spurgeon, S.K. (eds.) Advances in Sliding Mode Control - Concepts, Theory and Implementation, LNCIS, vol. 440, pp. 243–265. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36986-5_12, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896820975 &doi=10.1007/978-3-642-36986-5_12 &partnerID=40 &md5=88eec69ec29d9dc1556ac615a295cce0

  37. Moreno, J.A.: Exact differentiator with varying gains. Int. J. Control 91(9), 1983–1993 (2018), https://doi.org/10.1080/00207179.2017.1390262, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034667328 &doi=10.1080%2f00207179.2017.1390262 &partnerID=40 &md5=592acc0aaba765198142c2aee815a3c0

  38. Moreno, J.A.: Arbitrary-order fixed-time differentiators. IEEE Trans. Autom. Control 67(3), 1543–1549 (2022). https://doi.org/10.1109/TAC.2021.3071027

    Article  MathSciNet  MATH  Google Scholar 

  39. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, pp. 2856–2861, Cancún, Mexico, Dec 2008. https://doi.org/10.1109/CDC.2008.4739356, https://www.scopus.com/inward/record.uri?eid=2-s2.0-62949230418 &doi=10.1109%2fCDC.2008.4739356 &partnerID=40 &md5=b7a999d175320f71767e0bd95f5d2ee5

  40. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the Super-Twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012), https://doi.org/10.1109/TAC.2012.2186179, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859727230 &doi=10.1109%2fTAC.2012.2186179 &partnerID=40 &md5=e23bf5d63e7e95cc61aafa1d97642587

  41. Nakamura, H., Yamashita, Y., Nishitani, H.: Smooth Lyapunov functions for homogeneous differential inclusions. In: Proceedings of the 41st SICE Annual Conference, vol. 3, pp. 1974–1979 (2002)

    Google Scholar 

  42. Perruquetti, W., Floquet, T., Moulay, E.: Finite-time observers: application to secure communication. IEEE Trans. Autom. Control 53(2), 356–360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Prasov, A.A., Khalil, H.K.: A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Trans. Autom. Control 58, 569–580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qian, C., Lin, W.: Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans. Autom. Control 51(9), 1457–1471 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sanchez, T., Cruz-Zavala, E., Moreno, J.A.: An SOS method for the design of continuous and discontinuous differentiators. Int. J. Control 91(11), 2597–2614 (2018). https://doi.org/10.1080/00207179.2017.1393564

  46. Seeber, R., Horn, M., Fridman, L.: A novel method to estimate the reaching time of the Super-Twisting algorithm. IEEE Trans. Autom. Control 63(12), 4301–4308 (2018). https://doi.org/10.1109/TAC.2018.2812789

    Article  MathSciNet  MATH  Google Scholar 

  47. Seeber, R., Haimovich, H., Horn, M., Fridman, L., Battista, H.D.: Exact differentiators with assigned global convergence time bound. arXiv:2005.12366v1 (2020). https://doi.org/10.48550/arXiv.2005.12366

  48. Seeber, R., Haimovich, H., Horn, M., Fridman, L.M., De Battista, H.: Robust exact differentiators with predefined convergence time. Automatica 134, 109858 (2021). ISSN 0005-1098. https://doi.org/10.1016/j.automatica.2021.109858, https://www.sciencedirect.com/science/article/pii/S0005109821003782

  49. Shen, Y., Xia, X.: Semi-global finite-time observers for nonlinear systems. Automatica 44(12), 3152–3156 (2008). ISSN 0005-1098. https://doi.org/10.1016/j.automatica.2008.05.015, https://www.sciencedirect.com/science/article/pii/S0005109808003087

  50. Shtessel, Y.B., Shkolnikov, I.A.: Aeronautical and space vehicle control in dynamic sliding manifolds. Int. J. Control 76(9/10), 1000–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Google Scholar 

  52. Vasiljevic, L.K., Khalil, H.K.: Error bounds in differentiation of noisy signals by high-gain observers. Syst. Control Lett. 57, 856–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, B., Lin, W.: Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Trans. Autom. Control 49(7), 1069–1080 (2004). ISSN 0018-9286. https://doi.org/10.1109/TAC.2004.831186

Download references

Acknowledgements

The author would like to thank the financial support from PAPIIT-UNAM (Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica), project IN106323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno, J.A. (2023). Bi-homogeneous Differentiators. In: Oliveira, T.R., Fridman, L., Hsu, L. (eds) Sliding-Mode Control and Variable-Structure Systems. Studies in Systems, Decision and Control, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-37089-2_4

Download citation

Publish with us

Policies and ethics