Skip to main content

Flight Evaluation of a Sliding-Mode Fault-Tolerant Control Scheme

  • Chapter
  • First Online:
Sliding-Mode Control and Variable-Structure Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 490))

  • 346 Accesses

Abstract

This chapter describes the development and application of sliding-mode fault-tolerant control schemes to safety critical aerospace scenarios. There is growing literature exploiting the specific and unique properties of sliding modes in the field of fault-tolerant control, but many of the results are more theoretical in nature, and relatively little work has been published describing real implementations of these ideas. This chapter focuses on the development of fault-tolerant sliding-mode controllers for a class of linear parameter varying systems. This class of systems is commonly employed to model different aerospace systems, and so represents a natural starting point for these developments. The chapter describes the implementation of these ideas on a small, unmanned quadrotor UAV, and also piloted flight tests on a full-scale twin-engine civil aircraft.

©2018 IEEE. Reprinted with permission from C Edwards, L Chen, A Khattab, H Alwi, M Sato, “Flight evaluations of sliding mode fault tolerant controllers”, Proceedings of 15th International Workshop on Variable Structure Systems (VSS), pp. 180–185, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Adapted from L. Chen, H. Alwi, C. Edwards, and M. Sato, “Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control”, Automatica, vol 114, 2020. Originally published under a CC BY 4.0 license; https://doi.org/10.1016/j.automatica.2020.108829.

  2. 2.

    Reprinted with permission from A Khattab based on his PhD thesis “Fault Tolerant Control of Multi-Rotor Unmanned Aerial Vehicles Using Sliding Mode Based Schemes” [54].

References

  1. Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight Control: A Benchmark Challenge. Springer (2010)

    Google Scholar 

  2. Briere, D., Favre, C., Traverse, P.: A family of fault-tolerant systems: electrical flight controls from Airbus A320/330/340 to future military transport aircraft. In: Microprocessors and Microsystems, pp. 75–82 (1995)

    Google Scholar 

  3. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-Tolerant Control Using Sliding Modes. Springer (2011)

    Google Scholar 

  4. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32, 229–252 (2008)

    Article  Google Scholar 

  5. Wilkinson, S.: The 10 greatest emergency landings. In: Aviation History Magazine (2016)

    Google Scholar 

  6. Lemaignan, B.: Flying with no flight controls: handling qualities analyses of the Baghdad event. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA, pp. 2005–5907 (2005)

    Google Scholar 

  7. Job, M.: Air Disaster: Volume 2. Aerospace Publications Pty Ltd (1996)

    Google Scholar 

  8. Bateman, F., Noura, H., Ouladsine, M.: Actuators fault diagnosis and tolerant control for an unmanned aerial vehicle. In: International Conference on Control Applications, pp. 1061–1066 (2007)

    Google Scholar 

  9. Tucker, T.: Touchdown: the development of propulsion controlled aircraft at NASA Dryden. In: Monographs in Aerospace History (1999)

    Google Scholar 

  10. Williams Hayes, P.S.: Flight test implementation of a second generation intelligent flight control system, NASA. Technical Memorandum NASA/TM–2005–213669 (2015)

    Google Scholar 

  11. Hanson, C.: Capability description for NASA’s F/A–18 TN 853 as a testbed for the integrated resilient aircraft control project, NASA. Technical Memorandum DFRC–IRAC–CAP–002, DFRC–972 (2009)

    Google Scholar 

  12. Masui, K., Tsukano, Y.: Development of a new in-flight simulator MuPAL-\(\alpha \). In: AIAA paper 2000-4574 Aug (2000)

    Google Scholar 

  13. Watanabe, Y., Manecy, A., Amiez, A., Aoki, S., Nagai, S.: Fault-tolerant final approach navigation for a fixed-wing UAV by using long-range stereo camera system. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1065–1074 (2020)

    Google Scholar 

  14. Takase, R., Yoshikawa, N., Suzuki, S.: Combined fault detection, isolation, and control: propulsion controlled aircraft in case of elevator failure. In: IEEE Conference on Control Technology and Applications, pp. 754–759 (2018)

    Google Scholar 

  15. Marcos, A., Waitman, S., Sato, M.: Fault tolerant linear parameter varying flight control design, verification and validation, special issue high fidelity LPV systems under constraints. J. Frankl. Inst. 359, 653–676 (2022)

    Article  MATH  Google Scholar 

  16. Sato, M., Akasaka, D.: Luenberger observer-based flight controller design using robust control toolbox\(^{\text{TM}}\). In: IEEE Conference on Control Technology and Applications, pp. 1160–1165 (2021)

    Google Scholar 

  17. Chen, L., Alwi, H., Edwards, C., Sato, M.: Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica 114 (2020)

    Google Scholar 

  18. Chen, L., Alwi, H., Edwards, C., Sato, M.: Flight evaluation of an LPV sliding mode observer for sensor FTC. IEEE Trans. Control Syst. Technol. https://doi.org/10.1109/TCST.2021.3096946

  19. Hardier, G., Ferreres, G., Sato, M.: On-line parameter identification for indirect adaptive control: a practical comparison of frequency and time domain techniques. In: IEEE Conference on Control Technology and Applications, pp. 180–187 (2020)

    Google Scholar 

  20. Chamseddine, A., Zhang, Y., Rabbath, C.A., Fulford, C., Apkarian, J.: Model reference adaptive fault tolerant control of a quadrotor UAV. In: AIAA Infotech Aerospace, St. Louis, Missouri, USA, vol. 2931 (2011)

    Google Scholar 

  21. Li, T., Zhang, Y., Gordon, B.W.: Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng. 227, 12–23 (2013)

    Google Scholar 

  22. Izadi, H.A., Zhang, Y., Gordon, B.W.: Fault tolerant model predictive control of quadrotor helicopters with actuator fault estimation. IFAC Proc. Vol. 44, 6343–6348 (2011)

    Article  Google Scholar 

  23. Merheb, A.-R., Noura, H., Bateman, F.: A novel emergency controller for quadrotor UAVs. In: IEEE Conference on Control Applications (CCA), pp. 747–752 (2014)

    Google Scholar 

  24. Merheb, A.-R., Noura, H., Bateman, F.: Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory. Int. J. Appl. Math. Comput. Sci. 25, 561–576 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mueller, M.W., D’Andrea, R.: Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 45–52 (2014)

    Google Scholar 

  26. Mueller, M.W., D’Andrea, R.: Relaxed hover solutions for multicopters: application to algorithmic redundancy and novel vehicles. Int. J. Robot. Res. 35(8), 873–889 (2015)

    Article  Google Scholar 

  27. Alwi, H., Edwards, C.: Fault tolerant control of an octorotor using LPV based sliding mode control allocation. In: Proceedings of the American Control Conference, pp. 6505–6510 (2013)

    Google Scholar 

  28. Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., Sanahuja, G.: Fault diagnosis and fault–tolerant control strategy for rotor failure in an octorotor. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5266–5271 (2015)

    Google Scholar 

  29. Avram, R.C.: Fault diagnosis and fault–tolerant control of quadrotor UAVs. Ph.D. Dissertation, Wright State University (2016)

    Google Scholar 

  30. Schneider, T., Ducard, G., Rudin, K., Strupler, P.: Fault–tolerant control allocation for multirotor helicopters using parametric programming. In: International Micro Air Vehicle Conference and Flight Competition (IMAV) (2012)

    Google Scholar 

  31. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36, 1401–1425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Introduction to Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg (2016)

    Book  MATH  Google Scholar 

  33. Niemann, H., Stoustrup, J.: Integration of control and fault detection: nominal and robust design. In: SAFEPROCESS ’97, pp. 331–336 (1997)

    Google Scholar 

  34. Lombaerts, T., Van Oort, E., Chu, Q.P., Mulder, J.A., Joosten, D.: Online aerodynamic model structure selection and parameter estimation for fault tolerant control. J. Guid. Control Dyn. 33(3), 707–723 (2010)

    Article  Google Scholar 

  35. Maciejowski, J.M., Jones, C.N.: MPC fault-tolerant flight control case study: flight 1862. IFAC Proc. Vol. 36, 119–124 (2003)

    Article  Google Scholar 

  36. Edwards, C., Alwi, H., Tan, C.P.: Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. Int. J. Appl. Math. Comput. Sci. 22, 109–124 (2012)

    Google Scholar 

  37. Alwi, H., Edwards, C., Stroosma, O., Mulder, J., Hamayun, M.: Real-time implementation of an integral sliding mode fault tolerant control scheme for LPV plants. IEEE Trans. Ind. Electron. 62(6), 3896–3905 (2015)

    Google Scholar 

  38. Alwi, H., Edwards, C.: Development and application of sliding mode LPV fault reconstruction schemes for the ADDSAFE Benchmark. Control Eng. Pract. 31, 148–170 (2014)

    Article  Google Scholar 

  39. Vanek, B., Edelmayer, A., Szabo, Z., Bokor, J.: Bridging the gap between theory and practice in LPV fault detection for flight control actuators. Control Eng. Pract. 31, 171–182 (2014)

    Article  Google Scholar 

  40. Mohammadpour, J., Scherer, C.: Control of Linear Parameter Varying Systems with Applications. Springer (2012)

    Google Scholar 

  41. Rotondo, D., Nejjari, F., Puig, V., Blesa, J.: Model reference FTC for LPV systems using virtual actuator and set-membership fault estimation. Int. J. Robust Nonlinear Control 25, 753–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sato, M.: Gain-scheduled flight controller using bounded inexact scheduling parameters. IEEE Trans. Control Syst. Technol. 26, 1074–1082 (2018)

    Article  Google Scholar 

  43. Tapia, A., Bernal, M., Fridman, L.: Nonlinear sliding mode control design: an LMI approach. Syst. Control Lett. 104 (2017)

    Google Scholar 

  44. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers (1999)

    Google Scholar 

  45. Ding, S.X.: Model-Based Fault Diagnosis Techniques. Springer, London (2013)

    Book  MATH  Google Scholar 

  46. Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44, 1859–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Harkegard, O., Glad, S.: Resolving actuator redundancy - optimal vs. control allocation. Automatica 41, 137–144 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998)

    Google Scholar 

  49. Zinober, A.S.I.: Variable Structure and Lyapunov Control. Springer, Berlin, Heidelberg (1994)

    Book  MATH  Google Scholar 

  50. Chilali, M., Gahinet, P.: \({H}_{\infty }\) design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41, 358–367 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Utkin, V.: Sliding Modes in Control and Optimization. Springer (1992)

    Google Scholar 

  52. Ryan, E.P., Corless, M.: Ultimate boundedness and asymptotic stability of a class of uncertain dynamical systems via continuous and discontinuous feedback control. IMA J. Math. Control Inf. 1, 223–242 (1984)

    Article  MATH  Google Scholar 

  53. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34, 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Khattab, A.: Fault Tolerant Control of Multi-Rotor Unmanned Aerial Vehicles Using Sliding Mode Based Schemes. Ph.D. Thesis, University of Exeter (2020)

    Google Scholar 

  55. Fum, W.Z.: Implementation of Simulink controller design on Iris+quadrotor. Master Thesis, Naval Postgraduate School (2015)

    Google Scholar 

  56. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33, 21–39 (2012)

    Article  Google Scholar 

  57. Oborne, M.: Mission planner (software). Retreived from: http://ardupilot.org/planner/ [Online; accessed 28-Feb-2017] (2017)

  58. Polak, A.: PX4 Development Kit for Simulink. Technical Report, Polakium Engineering (2014)

    Google Scholar 

  59. Hartley, R.: APM2 Simulink blockset. MATLAB Central, vol. 13 (2012)

    Google Scholar 

  60. Kuznicki, S., Lee, D.: Pixhawk Pilot Support Package (PSP) User Guide, Version 2.1. MathWorks, Feb 2017

    Google Scholar 

  61. Li, K., Phang, S.K., Chen, B.M., Lee, T.H.: Platform design and mathematical modeling of an ultralight quadrotor micro aerial vehicle. In: International Conference, Unmanned Aircraft Systems (ICUAS) (2013)

    Google Scholar 

  62. Khattab, A., Alwi, H., Edwards, C.: Implementation of sliding mode fault tolerant control on the IRIS+ quadrotor. In: Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark (2018)

    Google Scholar 

  63. Sato, M., Satoh, A.: Flight control experiment of multipurpose-aviation-laboratory-\(\alpha \) in-flight simulator. J. Guid., Control, Dyn. 34 (2011)

    Google Scholar 

  64. Sato, M.: Robust model-following controller design for LTI systems affected by parametric uncertainties: a design example for aircraft motion. Int. J. Control 82, 689–704 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 690811 and the Japan New Energy and Industrial Technology Development Organization under grant agreement No. 062800, as part of the EU/Japan joint research project entitled “Validation of Integrated Safety-enhanced Intelligent flight cONtrol (VISION)”. We gratefully acknowledge the contributions of T. Hosoya, M. Naruoka, J. Kawaguchi, S. Morokuma, H. Ishii, and Y. Sagara from JAXA and Y. Uetake from Nakanihon Air Service for their support in terms of the implementation and evaluations of the SMC scheme on the MuPAL-\(\alpha \).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alwi, H., Chen, L., Edwards, C., Khattab, A., Sato, M. (2023). Flight Evaluation of a Sliding-Mode Fault-Tolerant Control Scheme. In: Oliveira, T.R., Fridman, L., Hsu, L. (eds) Sliding-Mode Control and Variable-Structure Systems. Studies in Systems, Decision and Control, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-37089-2_18

Download citation

Publish with us

Policies and ethics