Skip to main content

Low-Frequency Vibrothermography Using Lightweight Piezoelectric Actuators: The Location of Excitation and Application to Composite Materials

  • Conference paper
  • First Online:
Special Topics in Structural Dynamics & Experimental Techniques, Volume 5 (SEM 2023)

Abstract

This article presents a novel infrared thermographic approach for damage detection by utilizing the heat generated around damage sites during vibrations below 1000 Hz induced by lightweight piezoelectric actuators. In this research, the optimal location of excitation was first investigated through finite element analyses, where two generalized equations were obtained to describe the relationship between the excitation and the resulting displacement response. These observations were then verified experimentally on an aerospace-grade composite plate, followed by vibrothermographic tests conducted on the same structure to demonstrate the effectiveness of the proposed damage detection process employing only a single lightweight piezoelectric disk as the actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chi, X.: Modal-based vibrothermography for damage detection and structural health monitoring. PhD thesis, University of Bristol (2022)

    Google Scholar 

  2. Renshaw, J., Chen, J.C., Holland, S.D., Bruce Thompson, R.: The sources of heat generation in vibrothermography. NDT & E Int. 44(8), 736–739 (2011)

    Article  Google Scholar 

  3. Stinchcomb, W.W.: Mechanics of Nondestructive Testing. Springer New York, NY, USA (1980)

    Book  Google Scholar 

  4. Henneke II, E.G., Reifsnider, K.L., Stinchcomb, W.W.: Vibrothermography: investigation, development, and application of a new nondestructive evaluation technique. Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, Tech report (1986)

    Google Scholar 

  5. Henneke II, E.G., Jones, T.S.: Detection of damage in composite materials by vibrothermography. In: Nondestructive Evaluation and Flaw Criticality for Composite Materials (1979)

    Google Scholar 

  6. Henneke II, E.G., Reifsnider, K.L., Stinchcomb, W.W.: Thermography — an NDI method for damage detection. JOM. 31(9), 11–15 (1979)

    Article  Google Scholar 

  7. Stepinski, T., Uhl, T., Staszewski, W.: Advanced Structural Damage Detection: From Theory to Engineering Applications. John Wiley & Sons, Ltd, Chichester, West Sussex, UK (2013)

    Book  Google Scholar 

  8. Ibarra-Castanedo, C., Genest, M., Guibert, S., Piau, J.-M., Maldague, X.P.V., Bendada, A.: Inspection of aerospace materials by pulsed thermography, lock-in thermography, and vibrothermography: a comparative study. Thermosense XXIX. 6541, 321–329 (2007)

    Google Scholar 

  9. Mignogna, R.B., Green, R.E., Duke, J.C., Henneke II, E.G., Reifsnider, K.L.: Thermographic investigation of high-power ultrasonic heating in materials. Ultrasonics. 19(4), 159–163 (1981)

    Article  Google Scholar 

  10. Montanini, R., Freni, F.: Correlation between vibrational mode shapes and viscoelastic heat generation in vibrothermography. NDT & E Int. 58, 43–48 (2013)

    Article  Google Scholar 

  11. Holland, S.D., Uhl, C., Ouyang, Z., Bantel, T., Li, M., Meeker, W.Q., Lively, J., Brasche, L., Eisenmann, D.: Quantifying the vibrothermographic effect. NDT & E Int. 44(8), 775–782 (2011)

    Article  Google Scholar 

  12. Morbidini, M., Cawley, P., Barden, T., Almond, D., Duffour, P.: Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements. J. Appl. Phys. 100(10), 104905 (2006)

    Article  Google Scholar 

  13. Holland, S.D., Uhl, C., Renshaw, J.: Vibrothermographic crack heating: a function of vibration and crack size. AIP Conf. Proc. 1096(1), 489–494 (2009)

    Article  Google Scholar 

  14. Krapez, J.-C., Taillade, F., Balageas, D.: Ultrasound-lockin-thermography NDE of composite plates with low power actuators. Experimental investigation of the influence of the lamb wave frequency. Quant. InfraRed Thermogr. J. 2(2), 191–206 (2005)

    Article  Google Scholar 

  15. Solodov, I., Rahammer, M., Derusova, D., Busse, G.: Highly-efficient and noncontact vibro-thermography via local defect resonance. Quant. InfraRed Thermogr. J. 12(1), 98–111 (2015)

    Article  Google Scholar 

  16. Bai, G., Lamboul, B., Roche, J.-M., Baste, S.: Investigation of multiple cracking in glass/epoxy 2D woven composites by vibrothermography. Quant. InfraRed Thermogr. J. 13(1), 35–49 (2016)

    Article  Google Scholar 

  17. Kang, B., Cawley, P.: Low power PZT exciter for thermosonics. AIP Conf. Proc. 894(1), 484–491 (2007)

    Article  Google Scholar 

  18. Kang, B., Cawley, P.: Multi-mode excitation system for thermosonic testing of turbine blades. AIP Conf. Proc. 975(1), 520–527 (2008)

    Article  Google Scholar 

  19. Kang, B., Lee, H., Lee, C.: Performance of a small PZT exciter for thermosonic non-destructive testing. In: INTELEC 2009 – 31st International Telecommunications Energy Conference, pp. 1–4 (2009, October)

    Google Scholar 

  20. Renshaw, J., Holland, S.D., Barnard, D.J.: Viscous material-filled synthetic defects for vibrothermography. NDT & E Int. 42(8), 753–756 (2009)

    Article  Google Scholar 

  21. Pye, C.J., Adams, R.D.: Heat emission from damaged composite materials and its use in nondestructive testing. J. Phys. D. Appl. Phys. 14(5), 927–941 (1981)

    Article  Google Scholar 

  22. Pye, C.J., Adams, R.D.: Detection of damage in fibre reinforced plastics using thermal fields generated during resonant vibration. NDT Int. 14(3), 111–118 (1981)

    Article  Google Scholar 

  23. Homma, C., Rothenfusser, M., Baumann, J., Shannon, R., Thompson, D.O., Chimenti, D.E.: Study of the heat generation mechanism in acoustic thermography. AIP Conf. Proc. 820(1), 566–573 (2006)

    Article  Google Scholar 

  24. Rantala, J., Wu, D., Busse, G.: Amplitude-modulated lock-in vibrothermography for NDE of polymers and composites. Res. Nondestruct. Eval. 7(4), 215–228 (1996)

    Article  Google Scholar 

  25. Harwood, N., Cummings, W.M.: Thermoelastic Stress Analysis. CRC Press, Boca Raton, FL, USA (1991)

    Google Scholar 

  26. Morbidini, M., Cawley, P., Barden, T.J., Almond, D.P., Duffour, P.: A new approach for the prediction of the thermosonic signal from vibration records. AIP Conf. Proc. 820(1), 558–565 (2006)

    Article  Google Scholar 

  27. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Research Studies Press Ltd., Baldock, Hertfordshire, UK (2000)

    Google Scholar 

  28. Meola, C., Boccardi, S., Carlomagno, G.M.: Infrared Thermography in the Evaluation of Aerospace Composite Materials. Woodhead Publishing, Duxford, UK (2015)

    Google Scholar 

  29. Chi, X., Di Maio, D., Lieven, N.A.J.: Modal-based vibrothermography using feature extraction with application to composite materials. Struct. Health Monit. 19(4), 967–986 (2020)

    Article  Google Scholar 

  30. Chi, X., Di Maio, D., Lieven, N.A.J.: Health monitoring of bolted joints using modal-based vibrothermography. SN Appl. Sci. 2(8), 1446 (2020)

    Article  Google Scholar 

  31. Chi, X., Zhang, Y., Di Maio, D., Lieven, N.A.J.: Viability of image compression in vibrothermography. Exp. Tech. 45(3), 345–362 (2021)

    Article  Google Scholar 

  32. Chi, X., Di Maio, D., Lieven, N.A.J.: Frictional heating as an estimator of modal damping and structural degradation: a vibrothermographic approach. In: 12th Defence Science and Technology International Conference on Health and Usage Monitoring (2021)

    Google Scholar 

  33. Talai, S.M., Desai, D.A., Heyns, P.S.: Infrared thermography applied to the prediction of structural vibration behaviour. Alex. Eng. J. 58(2), 603–610 (2019)

    Article  Google Scholar 

  34. Han, X., Zeng, Z., Li, W., Islam, M.S., Lu, J., Loggins, V., Yitamben, E., Favro, L.D., Newaz, G., Thomas, R.L.: Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging. J. Appl. Phys. 95(7), 3792–3797 (2004)

    Article  Google Scholar 

  35. Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., Thomas, R.L.: Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 71(6), 2418–2421 (2000)

    Article  Google Scholar 

  36. Li, M., Holland, S.D., Meeker, W.Q.: Quantitative multi-inspection-site comparison of probability of detection for vibrothermography nondestructive evaluation data. J. Nondestruct. Eval. 30(3), 172–178 (2011)

    Article  Google Scholar 

  37. Vaddi, J., Reusser, R., Holland, S.D.: Characterization of piezoelectric stack actuators for vibrothermography. AIP Conf. Proc. 1335(1), 423–429 (2011)

    Article  Google Scholar 

  38. Vaddi, J., Holland, S.D., Reusser, R.: Transducer degradation and high amplitude behavior of broadband piezoelectric stack transducer for vibrothermography. AIP Conf. Proc. 1430(1), 552–558 (2012)

    Article  Google Scholar 

  39. Vaddi, J.S., Holland, S.D., Kessler, M.R.: Absorptive viscoelastic coatings for full field vibration coverage measurement in vibrothermography. NDT & E Int. 82, 56–61 (2016)

    Article  Google Scholar 

  40. Demy, P., Golinval, J.-C., Simon, D.: Damage detection in composites by vibrothermography and local resonances. Mech. Ind. 14(2), 137–143 (2013)

    Article  Google Scholar 

  41. Holland, S.D.: First measurements from a new broadband vibrothermography measurement system. AIP Conf. Proc. 894(1), 478–483 (2007)

    Article  Google Scholar 

  42. Lamboul, B., Passilly, F., Roche, J.-M., Balageas, D.: Ultrasonic vibrothermography using low-power actuators: an impact damage detection case study. AIP Conf. Proc. 1650(1), 319–326 (2015)

    Article  Google Scholar 

  43. Solodov, I., Bai, J., Bekgulyan, S., Busse, G.: A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation. Appl. Phys. Lett. 99(21), 211911 (2011)

    Article  Google Scholar 

  44. Parvasi, S.M., Xu, C., Kong, Q., Song, G.: Detection of multiple thin surface cracks using vibrothermography with low-power piezoceramic-based ultrasonic actuator—a numerical study with experimental verification. Smart Mater. Struct. 25(5), 055042 (2016)

    Article  Google Scholar 

  45. Zhu, L., Guo, X.: Vibro-thermography of debonding defects in composite plates. In: Conference on Quantitative Infrared Thermography – QIRT Asia 2017, Daejeon (2017)

    Google Scholar 

  46. Renshaw, J., Holland, S.D., Bruce Thompson, R.: Measurement of crack opening stresses and crack closure stress profiles from heat generation in vibrating cracks. Appl. Phys. Lett. 93(8), 081914 (2008)

    Article  Google Scholar 

  47. Russell, S.S., Henneke II, E.G.: Dynamic effects during vibrothermographic NDE of composites. NDT Int. 17(1), 19–25 (1984)

    Article  Google Scholar 

  48. Wang, C.-Y., Yew, C.H.: Impact damage in composite laminates. Comput. Struct. 37(6), 967–982 (1990)

    Article  Google Scholar 

  49. Bull, D.J., Spearing, S.M., Sinclair, I., Helfen, L.: Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus X-ray computed tomography and synchrotron radiation laminography. Compos. A: Appl. Sci. Manuf. 52, 62–69 (2013)

    Article  Google Scholar 

  50. Yang, F.J., Cantwell, W.J.: Impact damage initiation in composite materials. Compos. Sci. Technol. 70(2), 336–342 (2010)

    Article  Google Scholar 

  51. Richardson, M.O.W., Wisheart, M.J.: Review of low-velocity impact properties of composite materials. Compos. A: Appl. Sci. Manuf. 27(12), 1123–1131 (1996)

    Article  Google Scholar 

  52. Tai, N.H., Yip, M.C., Lin, J.L.: Effects of low-energy impact on the fatigue behavior of carbon/epoxy composites. Compos. Sci. Technol. 58(1), 1–8 (1998)

    Article  Google Scholar 

  53. Sjoblom, P.O., Hartness, J.T., Cordell, T.M.: On low-velocity impact testing of composite materials. J. Compos. Mater. 22(1), 30–52 (1988)

    Article  Google Scholar 

  54. de Vries, E.: Mechanics and mechanisms of ultrasonic metal welding. PhD thesis, The Ohio State University (2004)

    Google Scholar 

  55. Crawley, E.F., de Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  56. PI Ceramic: Displacement modes of piezoelectric actuators. https://www.piceramic.com/en/piezo-technology/properties-piezo-actuators/displacement-modes. Accessed 16 Sept 2022

  57. Dimitriadis, E.K., Fuller, C.R., Rogers, C.A.: Piezoelectric actuators for distributed vibration excitation of thin plates. J. Vib. Acoust. 113(1), 100–107 (1991)

    Article  Google Scholar 

  58. Kim, T.-W., Kim, J.-H.: Optimal distribution of an active layer for transient vibration control of a flexible plate. Smart Mater. Struct. 14(5), 904–916 (2005)

    Article  Google Scholar 

  59. Ramesh Kumar, K., Narayanan, S.: The optimal location of piezoelectric actuators and sensors for vibration control of plates. Smart Mater. Struct. 16(6), 2680–2691 (2007)

    Article  Google Scholar 

  60. Aldraihem, O.J., Singh, T., Wetherhold, R.C.: Optimal size and location of piezoelectric actuator/sensors: practical considerations. J. Guid. Control. Dyn. 23(3), 509–515 (2000)

    Article  Google Scholar 

  61. Sadri, A.M., Wright, J.R., Wynne, R.J.: Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms. Smart Mater. Struct. 8(4), 490–498 (1999)

    Article  Google Scholar 

  62. Swann, C., Chattopadhyay, A.: Optimization of piezoelectric sensor location for delamination detection in composite laminates. Eng. Optim. 38(5), 511–528 (2006)

    Article  Google Scholar 

  63. Hexcel Corporation: HexPly® 8552 epoxy matrix product data sheet (2020)

    Google Scholar 

  64. Marlett, K.: Hexcel 8552S AS4 plain weave fabric Prepreg 193 gsm & 38% RC qualification material property data report. National Institute for Aviation Research, Wichita State University, Tech report (2011)

    Google Scholar 

  65. Speakman, J.R., Ward, S.: Infrared thermography: principles and applications. Zoology. 101, 224–232 (1998)

    Google Scholar 

  66. Nicodemus, F.E.: Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4(7), 767–775 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintian Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi, X., Di Maio, D., Lieven, N.A.J. (2024). Low-Frequency Vibrothermography Using Lightweight Piezoelectric Actuators: The Location of Excitation and Application to Composite Materials. In: Allen, M., Blough, J., Mains, M. (eds) Special Topics in Structural Dynamics & Experimental Techniques, Volume 5. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-37007-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37007-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37006-9

  • Online ISBN: 978-3-031-37007-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics