Skip to main content

Experimental Characterization of Structural Traveling Wave-Induced Thrust

  • Conference paper
  • First Online:
Special Topics in Structural Dynamics & Experimental Techniques, Volume 5 (SEM 2023)

Abstract

Using nature-inspired solutions for propulsion, this work investigates the use of traveling waves to generate thrust in water. A design based on a slender cantilever beam similar to flagella in bacteria is submerged in water and excited with a sinusoidal motion to study the impact of frequency and amplitude of the oscillation on the thrust generation. Structural measurements combined with advanced flow diagnostic techniques are used to characterize the behavior of the fluid–structure system.

The structural response and the induced traveling waves are first studied in air and characterized through laser vibrometry and high-speed digital image correlation. This demonstrated the possibility of inducing traveling waves in the structure and permitted to identify the conditions that maximize the traveling versus the standing wave contribution.

The characterization of the fluid–structure interaction has been done using Laser Doppler Anemometry (LDA). LDA measurement was carried out downstream from the beam at a fixed distance to measure the velocity of the induced flow at different excitation conditions (amplitude and frequency).

The results showed that the coupling between the structural motion and the thrust generated is nonlinear in nature and depends on the tip displacement of the beam. Empirical laws that relate the amplitude and frequency of excitation to the generated thrust are here proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface. 10(88) (2013). https://doi.org/10.1098/rsif.2013.0667

  2. Godoy-Diana, R., Thiria, B.: On the diverse roles of fluid dynamic drag in animal swimming and flying. J. R. Soc. Interface. 15(139) (2018). https://doi.org/10.1098/rsif.2017.0715

  3. Piñeirua, M., Godoy-Diana, R., Thiria, B.: Resistive thrust production can be as crucial as added mass mechanisms for inertial undulatory swimmers. Phys. Rev. E. 92(2) (2015). https://doi.org/10.1103/PhysRevE.92.021001

  4. Piñeirua, M., Thiria, B., Godoy-Diana, R.: Modelling of an actuated elastic swimmer. J. Fluid Mech. 829, 731–750 (2017). https://doi.org/10.1017/jfm.2017.570

    Article  MathSciNet  MATH  Google Scholar 

  5. Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Propagating waves in bounded elastic media: transition from standing waves to anguilliform kinematics. EPL (Europhys.Lett.). 105(5) (2014). https://doi.org/10.1209/0295-5075/105/54003

  6. Ramananarivo, S., Thiria, B., Godoy-Diana, R.: Elastic swimmer on a free surface. Phys. Fluids. 26(9) (2014). https://doi.org/10.1063/1.4893539

  7. Raspa, V., et al.: Vortex-induced drag and the role of aspect ratio in undulatory swimmers. Phys. Fluids. 26(4) (2014). https://doi.org/10.1063/1.4870254

  8. Ogawa, J., et al.: Development of liquid pumping devices using vibrating microchannel walls. Sensors Actuators A Phys. 152(2), 211–218 (2009). https://doi.org/10.1016/j.sna.2009.04.004

    Article  Google Scholar 

  9. Ye, W., et al.: Travelling wave magnetic valveless micropump driven by rotating integrated magnetic arrays. Micro & Nano Lett. 9(4), 232–234 (2014). https://doi.org/10.1049/mnl.2014.0022

    Article  Google Scholar 

  10. Yu, H., et al.: Design, fabrication, and characterization of a valveless magnetic travelling-wave micropump. J. Micromech. Microeng. 25(6) (2015). https://doi.org/10.1088/0960-1317/25/6/065019

  11. Liu, G., Zhang, W.: Travelling-wave micropumps. In: Microbial Toxins, pp. 1–19 (2017). https://doi.org/10.1007/978-981-10-2798-7_29-1

    Chapter  Google Scholar 

  12. Erturk, A., Delporte, G.: Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms. Smart Mater. Struct. 20(12) (2011). https://doi.org/10.1088/0964-1726/20/12/125013

  13. Shahab, S., Tan, D., Erturk, A.: Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios. Euro. Phys. J. Spec. Top. 224(17–18), 3419–3434 (2015). https://doi.org/10.1140/epjst/e2015-50180-1

    Article  Google Scholar 

  14. Fernández-Prats, R., et al.: Large-amplitude undulatory swimming near a wall. Bioinspir. Biomim. 10(1) (2015). https://doi.org/10.1088/1748-3190/10/1/016003

  15. Demirer, E.: Bio-Inspired Locomotion Using Oscillating Elastic Plates. Georgia Institute of Technology, Georgia, Atlanta, USA (2021)

    Google Scholar 

  16. Shelton, R.M., Thornycroft, P., Lauder, G.V.: Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. J. Exp. Biol. (2014). https://doi.org/10.1242/jeb.098046

  17. Yeh, P.D.: Fast and Efficient Locomotion Using Oscillating Flexible Plates. Georgia Institute of Technology, Georgia, Atlanta, USA (2016)

    Google Scholar 

  18. Cen, L., Erturk, A.: Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir. Biomim. 8(1) (2013). https://doi.org/10.1088/1748-3182/8/1/016006

  19. Shahab, S., Erturk, A.: Underwater dynamic actuation of macro-fiber composite flaps with different aspect ratios: Electrohydroelastic modeling, testing, and characterization. In: Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting. American Society of Mechanical Engineers (ASME); Newport, RhodeIsland, USA (2014)

    Google Scholar 

  20. Shahab, S., Erturk, A.: Experimentally validated nonlinear electrohydroelastic Euler-Bernoulli-Morison model for macro-fiber composites with different aspect ratios. In: Volume 8: 27th Conference on Mechanical Vibration and Noise. American Society of Mechanical Engineers (ASME); Boston,Massachuse's, USA (2015)

    Google Scholar 

  21. Shahab, S., Erturk, A.: Coupling of experimentally validated electroelastic dynamics and mixing rules formulation for macro-fiber composite piezoelectric structures. J. Intell. Mater. Syst. Struct. 28(12), 1575–1588 (2016). https://doi.org/10.1177/1045389x16672732

    Article  Google Scholar 

  22. Byoung-Gook, L., Ro, P.I.: An object transport system using flexural ultrasonic progressive waves generated by two-mode excitation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(4), 994999 (2000). https://doi.org/10.1109/58.852083

    Article  Google Scholar 

  23. Bucher, I., et al.: Experimental travelling waves identification in mechanical structures. Math. Mech. Solids. American Society of Mechanical Engineers (ASME); Haifa, Israel 24(1), 152–167 (2017). https://doi.org/10.1177/1081286517732825

    Article  MathSciNet  MATH  Google Scholar 

  24. Gabai, R., Bucher, I.: Generating traveling vibration waves in finite structures. In: Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems. American Society of Mechanical Engineers (ASME); Haifa, Israel, pp. 761–770 (2008)

    Google Scholar 

  25. Hariri, H., Bernard, Y., Razek, A.: A traveling wave piezoelectric beam robot. Smart Mater. Struct. 23(2) (2014). https://doi.org/10.1088/0964-1726/23/2/025013

  26. Hariri, H., Bernard, Y., Razek, A.: Dual piezoelectric beam robot: the effect of piezoelectric patches’ positions. J. Intell. Mater. Syst. Struct. 26(18), 2577–2590 (2015). https://doi.org/10.1177/1045389x15572013

    Article  Google Scholar 

  27. Malladi, V.V.N.S.: Continual Traveling Waves in Finite Structures: Theory, Simulations, and Experiments. Virginia Polytechnic Institute and State University, Blacksburg (2016)

    Google Scholar 

  28. Musgrave, P.F.: Electro-hydro-elastic modeling of structure-borne traveling waves and their application to aquatic swimming motions. J. Fluids Struct. 102 (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103230

  29. Musgrave, P.F., Albakri, M.I., Phoenix, A.A.: Guidelines and procedure for tailoring high-performance, steadystate traveling waves for propulsion and solid-state motion. Smart Mater. Struct. 30(2) (2021). https://doi.org/10.1088/1361-665X/abd3d7

  30. Musgrave, P.F., et al.: Generating structure-borne traveling waves favorable for applications. In: ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers (ASME); Virtual, Online (2020)

    Google Scholar 

  31. Kuribayashi, M., Ueha, S., Mori, E.: Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor. J. Acoust. Soc. Am. 77(4), 1431–1435 (1985). https://doi.org/10.1121/1.392037

    Article  Google Scholar 

  32. Tanaka, N., Kikushima, Y.: Active wave control of a flexible beam. Proposition of the active sink method. JSME Int. J. Ser. 3, Vibr. Cont. Eng. Eng. Ind. 34(2), 159–167 (1991). https://doi.org/10.1299/jsmec1988.34.159

    Article  Google Scholar 

  33. Malladi, V.V.N.S., et al.: Investigation of propulsive characteristics due to traveling waves in continuous finite media. In: Bioinspiration, Biomimetics, and Bioreplication, Society of Photo-Optical Instrumentation Engineers (SPIE); Portland,Oregon, USA (2017)

    Google Scholar 

  34. Inman, D.J.: Engineering Vibrations, Fourth edn. Pearson, Upper Saddle River, New Jersey, USA (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cammarano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Syuhri, S., Zare-Behtash, H., Cammarano, A. (2024). Experimental Characterization of Structural Traveling Wave-Induced Thrust. In: Allen, M., Blough, J., Mains, M. (eds) Special Topics in Structural Dynamics & Experimental Techniques, Volume 5. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-37007-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37007-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37006-9

  • Online ISBN: 978-3-031-37007-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics