Skip to main content

Dynamic Outcomes-Based Clustering of Disease Trajectory in Mechanically Ventilated Patients

  • Chapter
  • First Online:
Artificial Intelligence for Personalized Medicine (W3PHAI 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1106))

Included in the following conference series:

Abstract

The advancement of Electronic Health Records (EHRs) and machine learning have enabled a data-driven and personalised approach to healthcare. One step in this direction is to uncover patient sub-types with similar disease trajectories in a heterogeneous population. This is especially important in the context of mechanical ventilation in intensive care, where mortality is high and there is no consensus on treatment. In this work, we present a new approach to clustering mechanical ventilation episodes, using a multi-task combination of supervised, self-supervised and unsupervised learning techniques. Our dynamic clustering assignment is explicitly guided to reflect the phenotype, trajectory and outcomes of the patient. Experimentation on a real-world dataset is encouraging, and we hope that we could someday translate this into actionable insights in guiding future clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A tracheostomy is a procedure designed for long term mechanical ventilation of a patient.

  2. 2.

    Preliminary experiments revealed that k-means were more likely to produce small clusters which lay far away from the rest of the data, because it is more affected by outliers. This made the clustering process less reliable and reproducible.

  3. 3.

    There is a 5 h gap between these predictions, therefore this time difference needs to be removed from the first prediction.

  4. 4.

    This is because younger patients can mask a problem by compensating deceptively well, until they reach a point where the homeostatic mechanisms can no longer cope.

References

  1. D.B. Antcliffe, K.L. Burnham, F. Al-Beidh, S. Santhakumaran, S.J. Brett, C.J. Hinds, D. Ashby, J.C. Knight, A.C. Gordon, Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial. Am. J. Respir. Crit. Care. Med. 199(8), 980ā€“986 (2019)

    Google ScholarĀ 

  2. T. Bein, S. Grasso, O. Moerer, M. Quintel, C. Guerin, M. Deja, A. Brondani, S. Mehta, The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensiv. Care Med. 42(5), 699ā€“711 (2016)

    ArticleĀ  Google ScholarĀ 

  3. S.V. Bhavani, M. Semler, E.T. Qian, P.A. Verhoef, C. Robichaux, M.M. Churpek, C.M. Coopersmith, Development and validation of novel sepsis subphenotypes using trajectories of vital signs. Intensiv. Care Med. 48(11), 1582ā€“1592 (2022)

    ArticleĀ  Google ScholarĀ 

  4. I. Chami, A. Gu, V. Chatziafratis, C. RĆ©, From trees to continuous embeddings and back: hyperbolic hierarchical clustering (2020). CoRR arXiv.org/abs/2010.00402

  5. Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    ArticleĀ  Google ScholarĀ 

  6. E. Choi, M.T. Bahadori, A. Schuetz, W.F. Stewart, J. Sun, Doctor AI: predicting clinical events via recurrent neural networks, in JMLR Workshop and Conference, vol. 56 (2015), pp. 301ā€“318

    Google ScholarĀ 

  7. G. Corso, R. Ying, M. PĆ”ndy, P. Veličković, J. Leskovec, P. LiĆ², Neural distance embeddings for biological sequences (2021). https://doi.org/10.48550/ARXIV.2109.09740, https://arxiv.org/abs/2109.09740

  8. K.R. Famous, K. Delucchi, L.B. Ware, K.N. Kangelaris, K.D. Liu, B.T. Thompson, C.S. Calfee, A. Network, Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195(3), 331ā€“338 (2017)

    ArticleĀ  Google ScholarĀ 

  9. A.D.T. Force, V.M. Ranieri, G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, L. Camporota, A.S. Slutsky, Acute respiratory distress syndrome: the Berlin definition. JAMA 307(23), 2526ā€“2533 (2012). https://jamanetwork.com/journals/jama/articlepdf/1160659/jsc120003_2526_2533.pdf

  10. H. Harutyunyan, H. Khachatrian, D.C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and benchmarking with clinical time series data. Sci. Data 6(96) (2019)

    Google ScholarĀ 

  11. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in Proceedings of the 32nd International Conference on International Conference on Machine Learning vol. 37, JMLR, ICMLā€™15 (2015), pp. 448ā€“456

    Google ScholarĀ 

  12. C. Lee, M. vanĀ der Schaar, Temporal phenotyping using deep predictive clustering of disease progression (2020). arXiv.org/abs/2006.08600

  13. Z.C. Lipton, D.C. Kale, C. Elkan, R.C. Wetzel, Learning to diagnose with LSTM recurrent neural networks (2015). CoRR. arXiv:1511.03677

  14. J. MĆ”ca, O. Jor, M. Holub, P. Sklienka, F. BurÅ”a, M. Burda, V. Janout, P. Å evčƭk, Past and present ARDS mortality rates: a systematic review. Respir. Care 62(1), 113ā€“122 (2017). http://rc.rcjournal.com/content/62/1/113.full.pdf

  15. R. Miotto, L. Li, B.A. Kidd, J.T. Dudley, Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6(1), 26094 (2016)

    ArticleĀ  Google ScholarĀ 

  16. A. Patel, D.M. Montserrat, C. Bustamante, A. Ioannidis, Hyperbolic geometry-based deep learning methods to produce population trees from genotype data (2022). bioRxiv

    Google ScholarĀ 

  17. J. Poole, C. McDowell, R. Lall, G. Perkins, D.F. McAuley, F. Gao, D. Young, Individual patient data analysis of tidal volumes used in three large randomized control trials involving patients with acute respiratory distress syndrome. BJA: Br. J. Anaesth. 118(4), 570ā€“575 (2017). http://www.oup/backfile/content_public/journal/bja/118/4/10.1093_bja_aew465/1/aew465.pdf

  18. A. Rajkomar, E. Oren, K. Chen et al., Scalable and accurate deep learning with electronic health records. Nature 1(1), 18 (2018)

    Google ScholarĀ 

  19. E Rocheteau, P LiĆ², S Hyland, Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit, in Proceedings of the Conference on Health, Inference, and Learning, Association for Computing Machinery, New York, NY, USA, CHILā€™21, (2021), pp. 58ā€“68

    Google ScholarĀ 

  20. A. Rusanov, P.V. Prado, C. Weng, Unsupervised time-series clustering over lab data for automatic identification of uncontrolled diabetes, in 2016 IEEE International Conference on Healthcare Informatics (ICHI) (2016), pp. 72ā€“80

    Google ScholarĀ 

  21. S. Sheikhalishahi, V. Balaraman, V. Osmani, Benchmarking machine learning models on eICU critical care dataset (2019). 1910.00964

    Google ScholarĀ 

  22. B. Shickel, T.J. Loftus, L. Adhikari, T. Ozrazgat-Baslanti, A. Bihorac, P. Rashidi, DeepSOFA: a continuous acuity score for critically Ill patients using clinically interpretable deep learning. Sci. Rep. (2019)

    Google ScholarĀ 

  23. H. Song, D. Rajan, J. Thiagarajan, A. Spanias, Attend and diagnose: clinical time series analysis using attention models, in 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018), pp. 4091ā€“4098

    Google ScholarĀ 

  24. P.J. Thoral, J.M. Peppink, R.H. Driessen, E.J.G. Sijbrands, E.J.O. Kompanje, L. Kaplan, H. Bailey, J. Kesecioglu, M. Cecconi, M. Churpek, G. Clermont, M. vanĀ der Schaar, A. Ercole, A.R.J. Girbes, P.W.G. Elbers, Sharing ICU patient data responsibly under the society of critical care medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example. Crit. Care Med. 49(6) (2021)

    Google ScholarĀ 

  25. C. Tong, E. Rocheteau, P. Veličković, N. Lane, P. LiĆ², Predicting patient outcomes with graph representation learning (Springer International Publishing, Cham, 2022), pp.281ā€“293

    Google ScholarĀ 

  26. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, U. Kaiser, I. Polosukhin, Attention is all you need, in Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., NIPSā€™17 (2017), pp. 6000ā€“6010

    Google ScholarĀ 

  27. Y. Wang, Y. Zhao, T.M. Therneau, E.J. Atkinson, A.P. Tafti, N. Zhang, S. Amin, A.H. Limper, S. Khosla, H. Liu, Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. J. Biomed. Inf. 102, 103364 (2020)

    ArticleĀ  Google ScholarĀ 

  28. H. YĆØche, G. Dresdner, F. Locatello, M. HĆ¼ser, G. RƤtsch, Neighborhood contrastive learning applied to online patient monitoring, in Proceedings of the 38th International Conference on Machine Learning, PMLR, Proceedings of Machine Learning Research, vol. 139, ed. by M. Meila, T. Zhang (2021), pp. 11964ā€“11974

    Google ScholarĀ 

  29. X. Zhang, J. Chou, J. Liang, C. Xiao, Y. Zhao, H. Sarva, C. Henchcliffe, F. Wang, Data-driven subtyping of Parkinsonā€™s disease using longitudinal clinical records: a cohort study. Sci. Rep. 9(1), 797 (2019)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors would like to thank Petar Veličković, Sophie Xhonneux, Stephanie Hyland and Mihaela van der Schaar for helpful discussions and advice. We also thank the Armstrong Fund, the Frank Edward Elmore Fund, and the School of Clinical Medicine at the University of Cambridge for their generous funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Rocheteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocheteau, E., Bica, I., LiĆ², P., Ercole, A. (2023). Dynamic Outcomes-Based Clustering of Disease Trajectory in Mechanically Ventilated Patients. In: Shaban-Nejad, A., Michalowski, M., Bianco, S. (eds) Artificial Intelligence for Personalized Medicine. W3PHAI 2023. Studies in Computational Intelligence, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-031-36938-4_6

Download citation

Publish with us

Policies and ethics