Skip to main content

The Multiple Regulatory Roles of Single-Stranded RNA Viral Genomes in Virion Formation and Infection

  • Chapter
  • First Online:
Physical Virology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 24))

  • 270 Accesses

Abstract

We describe our discovery, recent findings, and potential implications, of previously unsuspected roles of viral genomes in assembly regulation and infection. For a range of viral pathogens, including those that infect people, we have shown that assembly depends on multiple RNA-coat protein interactions. Spontaneous release of these constraints during assembly may also contribute to viral infectivity. These properties of viral genomes are conserved across strain variants and are therefore currently unexploited potential targets for directly-acting anti-viral drugs. Furthermore, grafting RNA assembly signals onto non-viral RNAs confers cognate packaging properties with appropriate coat proteins and is opening up an era of bespoke designer viral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingham RJ, Dykeman EC, Twarock R (2017) RNA virus evolution via a quasispecies-based model reveals a drug target with a high barrier to resistance. Viruses. https://doi.org/10.3390/v9110347

    Article  PubMed  PubMed Central  Google Scholar 

  2. Borodavka A, Tuma R, Stockley PG (2012) Evidence that viral RNAs have evolved for efficient, two-stage packaging. Proc Natl Acad Sci USA 109:15769–15774. https://doi.org/10.1073/pnas.1204357109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Borodavka A, Tuma R, Stockley PG (2013) A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 10:481–489. https://doi.org/10.4161/rna.23838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown RS, Kim L, Kielian M (2021) Specific recognition of a stem-loop RNA structure by the alphavirus capsid protein. Viruses. https://doi.org/10.3390/v13081517

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brown RS, Anastasakis DG, Hafner M, Kielian M (2020) Multiple capsid protein binding sites mediate selective packaging of the alphavirus genomic RNA. Nat Commun 11:4693. https://doi.org/10.1038/s41467-020-18447-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buchy P, Buisson Y, Cintra O, Dwyer DE, Nissen M, Ortiz de Lejarazu R, Petersen E (2021) COVID-19 pandemic: lessons learned from more than a century of pandemics and current vaccine development for pandemic control. Int J Infect Dis 112:300–317. https://doi.org/10.1016/j.ijid.2021.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunka DH, Lane SW, Lane CL, Dykeman EC, Ford RJ, Barker AM, Twarock R, Phillips SE, Stockley PG (2011) Degenerate RNA packaging signals in the genome of Satellite Tobacco Necrosis Virus: implications for the assembly of a T=1 capsid. J Mol Biol 413:51–65. https://doi.org/10.1016/j.jmb.2011.07.063

    Article  CAS  PubMed  Google Scholar 

  8. Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24. https://doi.org/10.1101/sqb.1962.027.001.005

    Article  CAS  PubMed  Google Scholar 

  9. Chandler-Bostock R, Mata CP, Bingham RJ, Dykeman EC, Meng B, Tuthill TJ, Rowlands DJ, Ranson NA, Twarock R, Stockley PG (2020) Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLoS Pathog 16:e1009146. https://doi.org/10.1371/journal.ppat.1009146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chandler-Bostock R, Bingham RJ, Clark S, Scott AJP, Wroblewski E, Barker A, White SJ, Dykeman EC, Mata CP, Bohon J, Farquhar E, Twarock R, Stockley PG (2022) Genome-regulated Assembly of a ssRNA Virus May Also Prepare It for Infection. J Mol Biol 434:167797. https://doi.org/10.1016/j.jmb.2022.167797

    Article  CAS  PubMed  Google Scholar 

  11. Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45. https://doi.org/10.4161/bact.1.1.14942

    Article  PubMed  PubMed Central  Google Scholar 

  12. Comas-Garcia M, Davis SR, Rein A (2016) On the selective packaging of genomic RNA by HIV-1. Viruses. https://doi.org/10.3390/v8090246

    Article  PubMed  PubMed Central  Google Scholar 

  13. Comas-Garcia M, Datta SA, Baker L, Varma R, Gudla PR, Rein A (2017) Dissection of specific binding of HIV-1 Gag to the “packaging signal” in viral RNA. Elife. https://doi.org/10.7554/eLife.27055

    Article  PubMed  PubMed Central  Google Scholar 

  14. Comas-Garcia M, Kroupa T, Datta SA, Harvin DP, Hu WS, Rein A (2018) Efficient support of virus-like particle assembly by the HIV-1 packaging signal. Elife. https://doi.org/10.7554/eLife.38438

    Article  PubMed  PubMed Central  Google Scholar 

  15. Crick FH, Watson JD (1956) Structure of small viruses. Nature 177:473–475. https://doi.org/10.1038/177473a0

    Article  CAS  PubMed  Google Scholar 

  16. Dai X, Li Z, Lai M, Shu S, Du Y, Zhou ZH, Sun R (2017) In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541:112–116. https://doi.org/10.1038/nature20589

    Article  CAS  PubMed  Google Scholar 

  17. Dent KC, Thompson R, Barker AM, Hiscox JA, Barr JN, Stockley PG, Ranson NA (2013) The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release. Structure 21:1225–1234. https://doi.org/10.1016/j.str.2013.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096

  19. Dykeman EC, Stockley PG, Twarock R (2010) Dynamic allostery controls coat protein conformer switching during MS2 phage assembly. J Mol Biol 395:916–923. https://doi.org/10.1016/j.jmb.2009.11.016

    Article  CAS  PubMed  Google Scholar 

  20. Dykeman EC, Stockley PG, Twarock R (2013) Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome. J Mol Biol 425:3235–3249. https://doi.org/10.1016/j.jmb.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  21. Dykeman EC, Stockley PG, Twarock R (2014) Solving a Levinthal’s paradox for virus assembly identifies a unique antiviral strategy. Proc Natl Acad Sci USA 111:5361–5366. https://doi.org/10.1073/pnas.1319479111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dykeman EC, Grayson NE, Toropova K, Ranson NA, Stockley PG, Twarock R (2011) Simple rules for efficient assembly predict the layout of a packaged viral RNA. J Mol Biol 408:399–407. https://doi.org/10.1016/j.jmb.2011.02.039

    Article  CAS  PubMed  Google Scholar 

  23. Feder AF, Harper KN, Brumme CJ, Pennings PS (2021) Understanding patterns of HIV multi-drug resistance through models of temporal and spatial drug heterogeneity. Elife. https://doi.org/10.7554/eLife.69032

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ferreiro DU, Komives EA, Wolynes PG (2014) Frustration in biomolecules. Q Rev Biophys 47:285–363. https://doi.org/10.1017/S0033583514000092

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ferreiro DU, Komives EA, Wolynes PG (2018) Frustration, function and folding. Curr Opin Struct Biol 48:68–73. https://doi.org/10.1016/j.sbi.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  26. Ferreiro DU, Hegler JA, Komives EA, Wolynes PG (2007) Localizing frustration in native proteins and protein assemblies. Proc Natl Acad Sci USA 104:19819–19824. https://doi.org/10.1073/pnas.0709915104

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ferreiro DU, Hegler JA, Komives EA, Wolynes PG (2011) On the role of frustration in the energy landscapes of allosteric proteins. Proc Natl Acad Sci USA 108:3499–3503. https://doi.org/10.1073/pnas.1018980108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ford RJ, Barker AM, Bakker SE, Coutts RH, Ranson NA, Phillips SE, Pearson AR, Stockley PG (2013) Sequence-specific, RNA-protein interactions overcome electrostatic barriers preventing assembly of satellite tobacco necrosis virus coat protein. J Mol Biol 425:1050–1064. https://doi.org/10.1016/j.jmb.2013.01.004. PMCID: PMC3593212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freiberger MI, Guzovsky AB, Wolynes PG, Parra RG, Ferreiro DU (2019) Local frustration around enzyme active sites. Proc Natl Acad Sci USA 116:4037–4043. https://doi.org/10.1073/pnas.1819859116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirao I, Spingola M, Peabody D, Ellington AD (1998) The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants. Mol Divers 4:75–89. https://doi.org/10.1023/a:1026401917416

    Article  CAS  PubMed  Google Scholar 

  31. Jakobsen JC, Nielsen EE, Feinberg J, Katakam KK, Fobian K, Hauser G, Poropat G, Djurisic S, Weiss KH, Bjelakovic M, Bjelakovic G, Klingenberg SL, Liu JP, Nikolova D, Koretz RL, Gluud C (2017) Direct-acting antivirals for chronic hepatitis C. Cochrane Database Syst Rev 9:CD012143. https://doi.org/10.1002/14651858.CD012143.pub3

  32. Johansson HE, Dertinger D, LeCuyer KA, Behlen LS, Greef CH, Uhlenbeck OC (1998) A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc Natl Acad Sci USA 95:9244–9249. https://doi.org/10.1073/pnas.95.16.9244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalynych S, Palkova L, Plevka P (2016) The structure of human Parechovirus 1 reveals an association of the RNA genome with the capsid. J Virol 90:1377–1386. https://doi.org/10.1128/JVI.02346-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keef T, Twarock R, Elsawy KM (2008) Blueprints for viral capsids in the family of polyomaviridae. J Theor Biol 253:808–816. https://doi.org/10.1016/j.jtbi.2008.04.029

    Article  CAS  PubMed  Google Scholar 

  35. Keef T, Wardman JP, Ranson NA, Stockley PG, Twarock R (2013) Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool. Acta Crystallogr A 69:140–150. https://doi.org/10.1107/S0108767312047150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keen EC (2015) A century of phage research: bacteriophages and the shaping of modern biology. BioEssays 37:6–9. https://doi.org/10.1002/bies.201400152

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kotta-Loizou I, Peyret H, Saunders K, Coutts RH, Lomonossoff GP (2019) Investigating the biological relevance of in vitro-Identified putative packaging signals at the 5′ terminus of satellite tobacco necrosis virus 1 genomic RNA. J Virol 93(9):e02106-18. https://doi.org/10.1128/JVI.02106-18. PMCID: PMC6475782

  38. Liljas L, Unge T, Jones TA, Fridborg K, Lovgren S, Skoglund U, Strandberg B (1982) Structure of satellite tobacco necrosis virus at 3.0 A resolution. J Mol Biol 159:93–108. https://doi.org/10.1016/0022-2836(82)90033-x

    Article  CAS  PubMed  Google Scholar 

  39. Lodish HF (1968) Independent translation of the genes of bacteriophage f2 RNA. J Mol Biol 32:681–685. https://doi.org/10.1016/0022-2836(68)90351-3

    Article  CAS  PubMed  Google Scholar 

  40. Loeb T, Zinder ND (1961) A bacteriophage containing RNA. Proc Natl Acad Sci USA 47:282–289. https://doi.org/10.1073/pnas.47.3.282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Masters PS (2019) Coronavirus genomic RNA packaging. Virology 537:198–207. https://doi.org/10.1016/j.virol.2019.08.031

    Article  CAS  PubMed  Google Scholar 

  42. Medawar PB et al (1983) Viruses. In: Aristotle to zoos: a philosophical dictionary of biology. Harvard University Press, Cambridge, pp 275

    Google Scholar 

  43. Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97:147–172. https://doi.org/10.1042/BC20040058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel N, Wroblewski E, Leonov G, Phillips SEV, Tuma R, Twarock R, Stockley PG (2017) Rewriting nature’s assembly manual for a ssRNA virus. Proc Natl Acad Sci USA 114:12255–12260. https://doi.org/10.1073/pnas.1706951114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patel N, Abulwerdi F, Fatehi F, Manfield IW, Le Grice S, Schneekloth JS Jr, Twarock R, Stockley PG (2022) Dysregulation of hepatitis B virus nucleocapsid assembly in vitro by RNA-binding small ligands. J Mol Biol 434:167557. https://doi.org/10.1016/j.jmb.2022.167557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patel N, Dykeman EC, Coutts RH, Lomonossoff GP, Rowlands DJ, Phillips SE, Ranson N, Twarock R, Tuma R, Stockley PG (2015) Revealing the density of encoded functions in a viral RNA. Proc Natl Acad Sci USA 112:2227–2232. https://doi.org/10.1073/pnas.1420812112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel N, Clark S, Weiss EU, Mata CP, Bohon J, Farquhar ER, Maskell DP, Ranson NA, Twarock R, Stockley PG (2021) In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun Biol 4:1407. https://doi.org/10.1038/s42003-021-02897-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel N, White SJ, Thompson RF, Bingham R, Weiss EU, Maskell DP, Zlotnick A, Dykeman E, Tuma R, Twarock R, Ranson NA, Stockley PG (2017) HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol 2:17098. https://doi.org/10.1038/nmicrobiol.2017.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pires C (2022) Global predictors of COVID-19 vaccine hesitancy: a systematic review. Vaccines (Basel). https://doi.org/10.3390/vaccines10081349

    Article  PubMed  Google Scholar 

  50. Prevelige PE Jr (2016) Follow the yellow brick road: a paradigm shift in virus assembly. J Mol Biol 428:416–418. https://doi.org/10.1016/j.jmb.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  51. Rolfsson O, Middleton S, Manfield IW, White SJ, Fan B, Vaughan R, Ranson NA, Dykeman E, Twarock R, Ford J, Kao CC, Stockley PG (2016) Direct evidence for packaging signal-mediated assembly of bacteriophage MS2. J Mol Biol 428:431–448. https://doi.org/10.1016/j.jmb.2015.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shakeel S, Dykeman EC, White SJ, Ora A, Cockburn JJB, Butcher SJ, Stockley PG, Twarock R (2017) Genomic RNA folding mediates assembly of human parechovirus. Nat Commun 8:5. https://doi.org/10.1038/s41467-016-0011-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stockley PG, Rolfsson O, Thompson GS, Basnak G, Francese S, Stonehouse NJ, Homans SW, Ashcroft AE (2007) A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. J Mol Biol 369:541–552. https://doi.org/10.1016/j.jmb.2007.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A, Dykeman E, Ford RJ, Pearson AR, Phillips SE, Ranson NA, Tuma R (2013) Packaging signals in single-stranded RNA viruses: nature’s alternative to a purely electrostatic assembly mechanism. J Biol Phys 39:277–287. https://doi.org/10.1007/s10867-013-9313-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szabo GT, Mahiny AJ, Vlatkovic I (2022) COVID-19 mRNA vaccines: Platforms and current developments. Mol Ther 30:1850–1868. https://doi.org/10.1016/j.ymthe.2022.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Talbot SJ, Goodman S, Bates SR, Fishwick CW, Stockley PG (1990) Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex. Nucleic Acids Res 18:3521–3528. https://doi.org/10.1093/nar/18.12.3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tetter S, Terasaka N, Steinauer A, Bingham RJ, Clark S, Scott AJP, Patel N, Leibundgut M, Wroblewski E, Ban N, Stockley PG, Twarock R, Hilvert D (2021) Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein. Science 372:1220–1224. https://doi.org/10.1126/science.abg2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toots M, Plemper RK (2020) Next-generation direct-acting influenza therapeutics. Transl Res 220:33–42. https://doi.org/10.1016/j.trsl.2020.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Twarock R (2004) A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J Theor Biol 226:477–482. https://doi.org/10.1016/j.jtbi.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  60. Twarock R, Luque A (2019) Structural puzzles in virology solved with an overarching icosahedral design principle. Nat Commun 10:4414. https://doi.org/10.1038/s41467-019-12367-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Twarock R, Leonov G, Stockley PG (2018) Hamiltonian path analysis of viral genomes. Nat Commun 9:2021. https://doi.org/10.1038/s41467-018-03713-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uyeki TM, Hui DS, Zambon M, Wentworth DE, Monto AS (2022) Influenza. Lancet 400:693–706. https://doi.org/10.1016/S0140-6736(22)00982-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valegard K, Murray JB, Stockley PG, Stonehouse NJ, Liljas L (1994) Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 371:623–626. https://doi.org/10.1038/371623a0

    Article  CAS  PubMed  Google Scholar 

  64. Van Blerkom LM (2003) Role of viruses in human evolution. Am J Phys Anthropol Suppl 37:14–46. https://doi.org/10.1002/ajpa.10384

    Article  Google Scholar 

  65. WHO (2016) Combating Hepatitis B and C to Reach Elimination by 2030. World Health Organization, pp 1–16

    Google Scholar 

  66. Wroblewski E (2018) Defining RNA packaging signals for virus assembly. Leeds

    Google Scholar 

  67. Zeltner N, Kohlbrenner E, Clement N, Weber T, Linden RM (2010) Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors. Gene Ther 17:872–879. https://doi.org/10.1038/gt.2010.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter G. Stockley or Reidun Twarock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stockley, P.G., Twarock, R. (2023). The Multiple Regulatory Roles of Single-Stranded RNA Viral Genomes in Virion Formation and Infection. In: Comas-Garcia, M., Rosales-Mendoza, S. (eds) Physical Virology. Springer Series in Biophysics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-36815-8_4

Download citation

Publish with us

Policies and ethics