Skip to main content

The In Vitro Packaging of “Overlong” RNA by Spherical Virus-Like Particles

  • Chapter
  • First Online:
Physical Virology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 24))

  • 293 Accesses

Abstract

Of the myriad viruses, very few have been shown to be capable of self-assembly in vitro from purified components into infectious virus particles. One of these is Cowpea Chlorotic Mottle Virus (CCMV), an unenveloped spherical plant virus whose capsid self-assembles around its RNA genome without a packaging signal. While heterologous RNA, not just cognate viral RNA, can be packaged into individual CCMV virus-like particles (VLPs), the RNA needs to fall within a certain range of lengths. If it is too short, it is packaged into particles smaller than wild type, or with two or more RNAs per capsid. If the RNA is too long, multiple capsids assemble around one RNA, and the RNA associated with these multiplet structures is not as RNase resistant. Further, as shown in the present work, 4200 nt appears to be the limiting length of RNA that can be packaged into single RNase-resistant CCMV VLPs. We explore the extent to which “overlong” RNA can be packaged more efficiently upon the addition of spermine, a polyvalent cation whose increasing concentration has been shown to compactify RNA. Finally, we show that the capsid protein of Brome Mosaic Virus (BMV), a bromovirus closely related to CCMV, also gives rise to multiplets when it is self-assembled with the same “overlong” RNA constructs, but with different distributions of multiplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yildiz I, Tsvetkova I, Wen AM, Shukla S, Masarapu MH, Dragnea B, Steinmetz NF, Fu Y, Li J (2016) A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Res 211:9–16

    Article  Google Scholar 

  2. Vaidya AJ, Solomon KV (2022) Surface functionalization of rod-shaped viral particles for biomedical applications. ACS Appl Bio Mater 5(5):1980–1989

    Article  CAS  PubMed  Google Scholar 

  3. Smith MT, Hawes AK, Bundy BC (2013) Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr Opin Biotech 24:620–626

    Article  CAS  PubMed  Google Scholar 

  4. Biddlecome A, Habte HH, McGrath KM, Sambanthamoorthy S, Wurm M et al (2019) RNA vaccines in in vitro reconstituted virus-like particles. PLoS One 14(6):e0215031

    Google Scholar 

  5. Saunders K, Thuenemann EC, Peyret H, Lomonossoff GT (2022) The Tobacco Mosaic virus origin of assembly sequence is dispensable for specific viral RNA encapsidation but necessary for initiating assembly at a single site. J Mol Biol 434:167873

    Article  CAS  PubMed  Google Scholar 

  6. Choi Y, Dreher TW, Rao ALN (2002) tRNA elements mediate the assembly of an icosahedral virus. Proc Natl Acad Sci USA 99:655–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Annamalai P, Rao ALN (2005) Dispensability of 3’ tRNA-like sequence for packaging cowpea chlorotic mottle virus genomic RNAs. Virol 332:650–658

    Article  CAS  Google Scholar 

  8. Cadena-Nava RD, Comas-Garcia M, Garmann RF, Rao ALN, Knobler CM, Gelbart WM (2012) Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein. RNA mass ratio. J Virol 86:3318–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stockley PG, Rolfsson O, Thompson GS, Basnak G, Francese S, Stonehouse NJ, Homans SW, Ashcroft AE (2007) A simple, RNA-mediated allosteric switch controls the pathway to formation of a T = 3 viral capsid. J Mol Biol 369:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhan S, Li J, Xu R, Wang L, Zhang K, Zhang R (2009) Armored long RNA controls or standards for branched DNA assay for detection of human immunodeficiency virus type 1. J Clin Microbiol 47:2571–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen SS, Greenberg ML (1981) Spermidine, an intrinsic component of turnip yellow mosaic virus. Proc Natl Acad Sci USA 78:54470–55474

    Article  Google Scholar 

  12. Clarke IN, Lambden PR (2000) Organization and expression of calicivirus genes. J Infect Dis 181:S309–S316

    Article  CAS  PubMed  Google Scholar 

  13. Gopal A, Ececioglu D, Yoffe AM, Ben-Shaul A, Rao ALN, Knobler CM, Gelbart WM (2014) Viral RNAs are unusually compact. PLoS ONE 9:e105875

    Article  PubMed  PubMed Central  Google Scholar 

  14. Erdemci-Tandogan G, Wagner J, van der Schoot P, Podgornik R, Zandi R (2014) RNA topology remolds electrostatic stabilization of viruses. Phys Rev E 89(3):032707

    Article  Google Scholar 

  15. Garmann RF, Comas-Garcia M, Koay MST, Cornelissen JJLM, Knobler CM, Gelbart WM (2014) The role of electrostatics in the assembly pathway of a single-stranded RNA virus. J Virol 88:10472–10479

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beren C, Cui Y, Chakravarty A, Yang X, Rao ALN, Knobler CM, Zhou ZH, Gelbart WM (2020) Genome organization and interaction with capsid protein in a multipartite RNA virus. Proc Natl Acad Sci USA 117:10673–10680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dai X, Li Z, Lai M, Shu S, Du Y, Zhou ZH, Sun R (2017) In situ structures of the genome and genome-delivery apparatus in an ssRNA virus. Nature 541(7635):112–116

    Article  CAS  PubMed  Google Scholar 

  18. Thurm AR, Beren C, Duran-Meza AL, Knobler CM, Gelbart WM (2019) RNA homopolymers form higher-curvature virus-like particles than do normal-composition RNAs. Biophys J 117(7):1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brasch M, Cornelissen JJLM (2012) Relative size selection of a conjugated polyelectrolyte in virus-like protein structures. Chem Commun 48(10):1446–1448

    Article  CAS  Google Scholar 

  20. Kler S, Wang JC, Dhason M, Oppenheim A, Zlotnick A (2013) Scaffold properties are a key determinant of the size and shape of self-assembled virus-derived particles. ACS Chem Biol 8(12):2753–2761

    Article  CAS  PubMed  Google Scholar 

  21. Li C, Kneller AR, Jacobson SC, Zlotnick A (2017) Single particle observation of SV40 VP1 polyanion-induced assembly shows that substrate size and structure modulate capsid geometry. ACS Chem Biol 12(5):1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hagan MF, Elrad OM (2010) Understanding the concentration dependence of viral capsid assembly kinetics—the origin of the lag time and identifying the critical nucleus size. Biophys J 98(6):1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perlmutter JD, Qiao C, Hagan MF (2013) Viral genome structures are optimal for capsid assembly. eLife 2:e00632

    Google Scholar 

  24. Mitra S, Kaeseberg P (1965) Biophysical properties of RNA from turnip yellow mosaic virus. J Mol Biol 14(2):558–571

    Article  CAS  PubMed  Google Scholar 

  25. Borodavka A, Dykeman EC, Schrimpf W, Lamb DC (2017) Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. Elife 6:e27453

    Article  PubMed  PubMed Central  Google Scholar 

  26. Duran-Meza AL, Oster L, Sportsman R, Phillips M, Knobler CM, Gelbart WM (2023) Long ssRNA Undergoes Continuous Compaction in the Presence of Polyvalent Cations. Biophys J. https://doi.org/10.1016/j.bpj.2023.07.022

  27. Zhao X, Young MJ (1995) In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia Coli and in vitro transcribed viral cDNA. Virology 207:486–494

    Article  CAS  PubMed  Google Scholar 

  28. Chang CB, Knobler CM, Gelbart WM, Mason TG (2008) Curvature dependence of viral protein structures on encapsidated nanoemulsion droplets. ACS Nano 2(2):281–286

    Article  CAS  PubMed  Google Scholar 

  29. Duran-Meza AL, Villagrana-Escareño MV, Ruiz-García J, Knobler CM, Gelbart WM (2021) Controlling the surface charge of simple viruses. PLoS ONE 16(9):e0255820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith ML, Corbo T, Bernales J, Lindbo JA, Pogue GP, Palmer KE, McCormick AA (2007) Assembly of trans-encapsidated viral vectors engineered from Tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology 358(2):321–333

    Google Scholar 

Download references

Acknowledgements

We are grateful to Jerrell Tisnado for expression and purification of recombinant capsid protein, and to all members of our research group for many helpful discussions about viral self-assembly over the past several years. This work has been supported financially by the National Science Foundation (Molecular and Cellular Biosciences Division, Genetic Mechanisms Program, Grants 1716975 and 2103700 to WMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Gelbart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duran-Meza, A.L., Chapman, A.G., Tanimoto, C.R., Knobler, C.M., Gelbart, W.M. (2023). The In Vitro Packaging of “Overlong” RNA by Spherical Virus-Like Particles. In: Comas-Garcia, M., Rosales-Mendoza, S. (eds) Physical Virology. Springer Series in Biophysics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-36815-8_3

Download citation

Publish with us

Policies and ethics