Skip to main content

Techno-Economic and Life Cycle Analysis of Bioethanol Production

  • Chapter
  • First Online:
Bioethanol: A Green Energy Substitute for Fossil Fuels

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Nowadays, there is a wide variety of pathways to transform biomass into biofuels. There are economically viable pathways that have been escalated to an industrial level and others still at the pilot and/or research and development scale. As well, considering a life cycle perspective for the environmental analysis, there are pros and cons that should be considered regarding the bioethanol environmental performance, since it has been considered that the use of bioethanol could help to reduce fossil fuels depletion and greenhouse gas emissions. In this chapter, some insights about techno-economic and environmental analyses of different bioethanol production methods developed in the last five years are determined. The techno-economic analysis details the potential economic viability of a selected technology at the research and development stage. The analysis considers the maturity level of the technologies available today: first, second, and third-generation bioethanol. Regarding the environmental performance of bioethanol from a life cycle perspective, it is clear that no biofuel is “climate neutral” because of the inputs of fossil fuels needed, in the agricultural and industrial processes, before the use stage. Given this background, a life cycle approach in a bioethanol environmental analysis facilitates an environmental profile containing all inputs and outputs that entailed in the bioethanol system, from the extraction of raw materials to the use of bioethanol in the engine of a vehicle. Life cycle assessment results allow informed decision-making and avoiding shifting environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alternative Fuels Data Center (2022) Maps and data—global ethanol production by country or region. https://afdc.energy.gov/data/. Accessed 11 Aug 2022

  2. Althaus H-J, Doka G, Dones R et al (2007) Overview and methodology. Ecoinvent report No. 1. Dübendorf

    Google Scholar 

  3. Angili ST, Grzesik K, Rödl A, Kaltschmitt M (2021) Life cycle assessment of bioethanol production: a review of feedstock, technology and methodology. Energies 14:2939. https://doi.org/10.3390/EN14102939

  4. Ballesteros M (2010) Producción de bioetanol. In: Nogués F, García-Galindo D, Rezeau A (eds) Energía de la Biomasa. Prensas Universitarias de Zaragoza, Zaragoza, pp 461–487

    Google Scholar 

  5. Batuecas E, Contreras-Lisperguer R, Mayo C et al (2021) Jamaican bioethanol: an environmental and economic life cycle assessment. Clean Technol Environ Policy 23:1415–1430. https://doi.org/10.1007/S10098-021-02037-8/TABLES/2

    Article  Google Scholar 

  6. Byun J, Kwon O, Kim J, Han J (2022) Carbon-negative food waste-derived bioethanol: a hybrid model of life cycle assessment and optimization. ACS Sustain Chem Eng 4512–4521. https://doi.org/10.1021/acssuschemeng.1c08300

  7. Cherubini F, Strømman AH, Ulgiati S (2011) Influence of allocation methods on the environmental performance of biorefinery products—a case study. Resour Conserv Recycl 55:1070–1077. https://doi.org/10.1016/j.resconrec.2011.06.001

    Article  Google Scholar 

  8. Chong TY, Cheah SA, Ong CT et al (2020) Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: a case study in Malaysia. Energy 210:118491. https://doi.org/10.1016/J.ENERGY.2020.118491

    Article  Google Scholar 

  9. Chowdhury H, Loganathan B (2019) Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20:39–44. https://doi.org/10.1016/J.COGSC.2019.09.003

    Article  Google Scholar 

  10. Costa D, Jesus J, Virgínio e Silva J, Silveira M (2018) Life cycle assessment of bioethanol production from sweet potato (Ipomoea batatas L.) in an experimental plant. Bioenergy Res 11:715–725. https://doi.org/10.1007/S12155-018-9932-1/TABLES/3

  11. Demichelis F, Laghezza M, Chiappero M, Fiore S (2020) Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass. J Clean Prod 277. https://doi.org/10.1016/J.JCLEPRO.2020.124111

  12. Espada JJ, Villalobos H, Rodríguez R (2021) Environmental assessment of different technologies for bioethanol production from Cynara cardunculus: a life cycle assessment study. Biomass Bioenerg 144:105910. https://doi.org/10.1016/J.BIOMBIOE.2020.105910

    Article  Google Scholar 

  13. Ferreira da Silva A, Brazinha C, Costa L, Caetano NS (2020) Techno-economic assessment of a Synechocystis based biorefinery through process optimization. Energy Rep 6:509–514. https://doi.org/10.1016/J.EGYR.2019.09.016

    Article  Google Scholar 

  14. Global Petrol Prices (2022) Ethanol prices around the world. https://www.globalpetrolprices.com/ethanol_prices/. Accessed 26 Jul 2022

  15. Goedkoop M, De Schryver A, Oele M et al (2010) Introduction to LCA with SimaPro 7. PRé Consultants

    Google Scholar 

  16. González-García S, Luo L, Moreira T et al (2009) Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain. Renew Sustain Energy Rev 113:1922–1933. https://doi.org/10.1016/j.rser.2009.02.003

    Article  Google Scholar 

  17. Gro Intelligence (2019) How big ethanol plans will rock global corn and sugar markets. https://gro-intelligence.com/insights/how-big-ethanol-plans-will-rock-global-corn-and-sugar-markets. Accessed 15 Aug 2022

  18. Guerrero AB, Muñoz E (2018) Life cycle assessment of second generation ethanol derived from banana agricultural waste: Environmental impacts and energy balance. J Clean Prod 174:710–717. https://doi.org/10.1016/J.JCLEPRO.2017.10.298

    Article  Google Scholar 

  19. Hasanly A, Khajeh Talkhoncheh M, Karimi Alavijeh M (2018) Techno-economic assessment of bioethanol production from wheat straw: a case study of Iran. Clean Technol Environ Policy 20:357–377. https://doi.org/10.1007/S10098-017-1476-0/FIGURES/15

    Article  Google Scholar 

  20. Hauschild MZ, Rosenbaum RK, Olsen SI (eds) (2018) Life cycle assessment. Springer, Cham, Switzerland

    Google Scholar 

  21. Hossain N, Mahlia TMI, Zaini J, Saidur R (2019) Techno-economics and sensitivity analysis of microalgae as commercial feedstock for bioethanol production. Environ Prog Sustain Energy 38:1–14. https://doi.org/10.1002/ep.13157

    Article  Google Scholar 

  22. Hossain MS, Theodoropoulos C, Yousuf A (2019) Techno-economic evaluation of heat integrated second generation bioethanol and furfural coproduction. Biochem Eng J 144:89–103. https://doi.org/10.1016/j.bej.2019.01.017

    Article  Google Scholar 

  23. Hossain N, Zaini J, Indra Mahlia TM (2019c) Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renew Sustain Energy Rev 115. https://doi.org/10.1016/J.RSER.2019.109371

  24. IEA (2021) World energy outlook 2021. www.iea.org/weo. Accessed 12 May 2022

  25. IEA (2022a) Transport biofuels. https://www.iea.org/reports/renewable-energy-market-update-may-2022/transport-biofuels#abstract. Accessed 13 May 2022

  26. IEA (2022b) Renewables 2021 data explorer. https://www.iea.org/articles/renewables-2021-data-explorer?mode=transport&region=World&publication=2021&flow=Production&product=Ethanol. Accessed 9 Aug 2022

  27. IEA (2017) Transport biofuels. https://www.iea.org/etp/tracking2017/transportbiofuels/. Accessed 1 Jun 2017

  28. IPCC (2022) Synthesis report. https://www.ipcc.ch/ar6-syr/. Accessed 12 May 2022

  29. IRENA (2012) Fast facts. In: Bioethanol/costs/presentations/fast-facts. Accessed 16 Aug 2022

    Google Scholar 

  30. ISO (2006a) Environmental management. Life cycle assessment. Principles and framework (ISO 14040:2006). Geneva, Switzerland

    Google Scholar 

  31. ISO (2006b) Environmental management. Life cycle assessment. Requirements and guidelines (ISO 14044:2006). Geneva, Switzerland

    Google Scholar 

  32. Jayasundara MP, Jayasinghe KT, Rathnayake M, Rathnayake mratnayake M (2022) Process simulation integrated life cycle net energy analysis and GHG assessment of fuel-grade bioethanol production from unutilized rice straw. Waste Biomass Valorization 1. https://doi.org/10.1007/s12649-022-01763-4

  33. Larnaudie V, Ferrari MD, Lareo C (2022) Switchgrass as an alternative biomass for ethanol production in a biorefinery: perspectives on technology, economics and environmental sustainability. Renew Sustain Energy Rev 158. https://doi.org/10.1016/J.RSER.2022.112115

  34. Liu F, Guo X, Wang Y et al (2021) Process simulation and economic and environmental evaluation of a corncob-based biorefinery system. J Clean Prod 329:129707. https://doi.org/10.1016/J.JCLEPRO.2021.129707

    Article  Google Scholar 

  35. Liu F, Short MD, Alvarez-Gaitan JP, et al (2020) Environmental life cycle assessment of lignocellulosic ethanol-blended fuels: a case study. J Clean Prod 245. https://doi.org/10.1016/J.JCLEPRO.2019.118933

  36. Lopes TF, Cabanas C, Silva A et al (2019) Process simulation and techno-economic assessment for direct production of advanced bioethanol using a genetically modified Synechocystis sp. Bioresour Technol Rep 6:113–122. https://doi.org/10.1016/J.BITEB.2019.02.010

    Article  Google Scholar 

  37. Lyu H, Zhang J, Zhai Z et al (2020) Life cycle assessment for bioethanol production from whole plant cassava by integrated process. J Clean Prod 269. https://doi.org/10.1016/J.JCLEPRO.2020.121902

  38. Ma T, Kosa M, Sun Q (2014) Fermentation to bioethanol/biobutanol. In: Ragauskas A (ed) Materials for biofuels. World Scientific Printers, pp 155–189

    Google Scholar 

  39. Machado Neto PA (2021) Why Brazil imports so much corn-based ethanol: the role of Brazilian and American ethanol blending mandates. Renew Sustain Energy Rev 152. https://doi.org/10.1016/J.RSER.2021.111706

  40. Manhongo TT, Chimphango A, Thornley P, Röder M (2021) Techno-economic and environmental evaluation of integrated mango waste biorefineries. J Clean Prod 325. https://doi.org/10.1016/J.JCLEPRO.2021.129335

  41. Mohapatra S, Behera BC, Acharya AN, Thatoi H (2022) Life cycle assessment of bioethanol production from Pennisetum sp. using fed-batch simultaneous saccharification and cofermentation at high solid loadings. Int J Energy Res 46:2904–2922. https://doi.org/10.1002/ER.7352

    Article  Google Scholar 

  42. Mohd Yusof SJH, Roslan AM, Ibrahim KN et al (2019) Life cycle assessment for bioethanol production from oil palm frond juice in an oil palm based biorefinery. Sustain 11:6928. https://doi.org/10.3390/SU11246928

  43. NREL (2021) Biochemical conversion techno-economic analysis. https://www.nrel.gov/bioenergy/biochemical-conversion-techno-economic-analysis.html. Accessed 7 May 2022

  44. Nanda S, Mohammad J, Reddy SN et al (2013) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Biorefinery 4:157–191. https://doi.org/10.1007/s13399-013-0097-z

    Article  Google Scholar 

  45. Navas-Anguita Z, García-Gusano D, Iribarren D (2019) A review of techno-economic data for road transportation fuels. Renew Sustain Energy Rev 112:11–26. https://doi.org/10.1016/J.RSER.2019.05.041

    Article  Google Scholar 

  46. Ngigi W, Siagi Z, Anil Kumar ·, Arowo M (2022) Predicting the techno-economic performance of a large-scale second-generation bioethanol production plant: a case study for Kenya. Int J Energy Environ Eng. https://doi.org/10.1007/s40095-022-00517-1

  47. Ntimbani RN, Farzad S, Görgens JF (2021) Techno-economic assessment of one-stage furfural and cellulosic ethanol co-production from sugarcane bagasse and harvest residues feedstock mixture. Ind Crops Prod 162. https://doi.org/10.1016/j.indcrop.2021.113272

  48. OECD-FAO (2021) Agricultural outlook 2021–2030. In: 9. Biofuels. https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2021-2030_19428846-en. Accessed 13 May 2022

  49. PRé Sustainability (2021) Simapro database manual methods library

    Google Scholar 

  50. Padella M, O’Connell A, Prussi M (2019) What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl Sci 9:4523. https://doi.org/10.3390/APP9214523

  51. Pandey R, Nahar N, Pryor SW, Pourhashem G (2021) Cost and environmental benefits of using pelleted corn stover for bioethanol production. Energies 14:2528. https://doi.org/10.3390/EN14092528

  52. Parascanu MM, Sanchez N, Sandoval-Salas F et al (2021) Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environ Sci Pollut Res 28:64374–64393. https://doi.org/10.1007/s11356-021-15471-4/Published

    Article  Google Scholar 

  53. Pratto B, dos Santos-Rocha MSR, Longati AA, et al (2020) Experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw. Bioresour Technol 297. https://doi.org/10.1016/J.BIORTECH.2019.122494

  54. Qin Y, Suh S (2021) Method to decompose uncertainties in LCA results into contributing factors. Int J Life Cycle Assess 1:977–988. https://doi.org/10.1007/s11367-020-01850-5

    Article  Google Scholar 

  55. Qin Y, Cucurachi S, Suh S (2020) Perceived uncertainties of characterization in LCA: a survey. Int J Life Cycle Assess 1846–1858. https://doi.org/10.1007/s11367-020-01787-9

  56. Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: prospects and challenges. Renew Sustain Energy Rev 117. https://doi.org/10.1016/J.RSER.2019.109479

  57. Ramesh P, Arul V, Selvan M, Babu D (2022) Selection of sustainable lignocellulose biomass for second-generation bioethanol production for automobile vehicles using lifecycle indicators through fuzzy hybrid PyMCDM approach. Fuel 322:124240. https://doi.org/10.1016/J.FUEL.2022.124240

    Article  Google Scholar 

  58. Ranjbari M, Shams Esfandabadi Z, Shevchenko T et al (2022) An inclusive trend study of techno-economic analysis of biofuel supply chains. Chemosphere 309. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136755

  59. Saddler J, Ebadian M, Mcmillan JD (2020) Advanced biofuels-potential for cost reduction

    Google Scholar 

  60. Sadhukhan J, Martinez-Hernandez E, Amezcua-Allieri MA et al (2019) Economic and environmental impact evaluation of various biomass feedstock for bioethanol production and correlations to lignocellulosic composition. Bioresour Technol Reports 7. https://doi.org/10.1016/J.BITEB.2019.100230

  61. Sajid Z, Da Silva MAB, Danial SN (2021) Historical analysis of the role of governance systems in the sustainable development of biofuels in Brazil and the United States of America (USA). Sustain 13:6881. https://doi.org/10.3390/SU13126881

  62. Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC et al (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 107:587–601. https://doi.org/10.1016/J.RSER.2019.02.024

    Article  Google Scholar 

  63. Sondhi S, Kaur PS, Kaur M (2020) Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Appl Sci 2:1–13. https://doi.org/10.1007/S42452-020-03362-1/TABLES/5

    Article  Google Scholar 

  64. Sujata AA, Kaushal P (2021) Life cycle assessment of strategic locations to establish molasses based bioethanol production facility in India. Clean Environ Syst 3:100055. https://doi.org/10.1016/J.CESYS.2021.100055

    Article  Google Scholar 

  65. Syahirah N, Aron M, Kuan | et al (2020) Sustainability of the four generations of biofuels—a review. Int J Energy Res 44:9266–9282. https://doi.org/10.1002/ER.5557

  66. Tse TJ, Wiens DJ, Reaney MJT (2021) Production of bioethanol—a review of factors affecting ethanol yield. Ferment 7:268. https://doi.org/10.3390/FERMENTATION7040268

  67. Vaskan P, Pachón ER, Gnansounou E (2018) Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil. J Clean Prod 172:3655–3668. https://doi.org/10.1016/J.JCLEPRO.2017.07.218

    Article  Google Scholar 

  68. Wang X, Yang J, Zhang Z et al (2022) Techno-economic assessment of poly-generation pathways of bioethanol and lignin-based products. Bioresour Technol Rep 17. https://doi.org/10.1016/J.BITEB.2021.100919

  69. Wang C, Malik A, Wang Y et al (2020) The social, economic, and environmental implications of biomass ethanol production in China: a multi-regional input-output-based hybrid LCA model. J Clean Prod 249. https://doi.org/10.1016/J.JCLEPRO.2019.119326

  70. Wietschel L, Messmann L, Thorenz A, Tuma A (2021) Environmental benefits of large-scale second-generation bioethanol production in the EU: an integrated supply chain network optimization and life cycle assessment approach. J Ind Ecol 25:677–692. https://doi.org/10.1111/JIEC.13083

    Article  Google Scholar 

  71. Wong KH, Tan IS, Foo HCY et al (2022) Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: prospects of industry 5.0 algae. Energy Convers Manag 253. https://doi.org/10.1016/J.ENCONMAN.2021.115155

  72. Wu W, Lin KH, Chang JS (2018) Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Bioresour Technol 267:550–559. https://doi.org/10.1016/j.biortech.2018.07.083

    Article  Google Scholar 

  73. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–15. https://doi.org/10.1016/0960-8524(94)90214-3

    Article  Google Scholar 

  74. Zaky AS, Carter CE, Meng F, French CE (2021) A preliminary life cycle analysis of bioethanol production using seawater in a coastal biorefinery setting. Process 9:1399. https://doi.org/10.3390/PR9081399

  75. Zucaro A, Forte A, Fierro A (2018) Life cycle assessment of wheat straw lignocellulosic bio-ethanol fuel in a local biorefinery prospective. J Clean Prod 194:138–149. https://doi.org/10.1016/J.JCLEPRO.2018.05.130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmundo Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrero, A.B., Muñoz, E. (2023). Techno-Economic and Life Cycle Analysis of Bioethanol Production. In: Betiku, E., Ishola, M.M. (eds) Bioethanol: A Green Energy Substitute for Fossil Fuels. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-36542-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36542-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36541-6

  • Online ISBN: 978-3-031-36542-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics