Skip to main content

Ethanol Utilization in Spark-Ignition Engines and Emission Characteristics

  • Chapter
  • First Online:
Bioethanol: A Green Energy Substitute for Fossil Fuels

Part of the book series: Green Energy and Technology ((GREEN))

  • 239 Accesses

Abstract

The chapter gives an overview of ethanol as a fuel and the effects of ethanol and ethanol blends on spark ignition engines. Subjects such as the effect of ethanol fuel properties on engine-out emissions, the advantages and disadvantages of ethanol fuel, and the change of these properties as ethanol is blended with gasoline are highlighted. The octane number, the heat of evaporation, the air-to-fuel (A/F) ratio, the heating value of ethanol, and engine characteristics such as volumetric efficiency, knock, construction, etc., are discussed. Emission components, including nitrous oxides (NOx), unburned hydrocarbons (HC), carbon monoxide (CO), and particle matter (PM), are considered. In addition, the cold start characteristics of ethanol fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Muhsen NFO, Hong G (2017) Effect of spark timing on performance and emissions of a small spark ignition engine with dual ethanol fuel injection. SAE Technical Papers.https://doi.org/10.4271/2017-01-2230

  2. AlRamadan AS, Sarathy SM, Khurshid M, Badra J (2016) A blending rule for octane numbers of PRFs and TPRFs with ethanol. Fuel 180:175–186. https://doi.org/10.1016/j.fuel.2016.04.032

    Article  Google Scholar 

  3. AlRamadan AS, Sarathy SM, Badra J (2021) Unraveling the octane response of gasoline/ethanol blends: paving the way to formulating gasoline surrogates. Fuel 299. https://doi.org/10.1016/j.fuel.2021.120882

  4. Anderson JE, Kramer U, Mueller SA, Wallington TJ (2010) Octane numbers of ethanol- and methanol-gasoline blends estimated from molar concentrations. Energy Fuels 24(12):6576–6585. https://doi.org/10.1021/ef101125c

    Article  Google Scholar 

  5. Anderson JE, Wallington TJ (2020) Novel method to estimate the octane ratings of ethanol-gasoline mixtures using base fuel properties. Energy Fuels 34(4):4632–4642. https://doi.org/10.1021/acs.energyfuels.9b04204

    Article  Google Scholar 

  6. Anderson JE, Thomas GL, Michael HS, Wallington TJ, Bizub JJ, Foster M, Lynskey MG, Polovina D (2012) Octane numbers of ethanol-gasoline blends: measurements and novel estimation method from molar composition. SAE Technical Papers. https://doi.org/10.4271/2012-01-1274

  7. Azhaganathan G, Bragadeshwaran A (2022) Critical review on recent progress of ethanol fuelled flex-fuel engine characteristics. Int J Energy Res 46(5):5646–5677. https://doi.org/10.1002/er.7610

    Article  Google Scholar 

  8. Barboza ABV, Mohan S, Dinesha P (2022) On reducing the emissions of CO, HC, and NOx from gasoline blended with hydrogen peroxide and ethanol: optimization study aided with ANN-PSO. Environ Pollut 310(October):119866. https://doi.org/10.1016/j.envpol.2022.119866

    Article  Google Scholar 

  9. Bielaczyc P, Woodburn J, Klimkiewicz D, Pajdowski P, Szczotka A (2013) An examination of the effect of ethanol–gasoline blends’ physicochemical properties on emissions from a light-duty spark ignition engine. Fuel Process Technol 107:50–63. https://doi.org/10.1016/j.fuproc.2012.07.030

    Article  Google Scholar 

  10. Bureshaid K, Shimura R, Feng D, Zhao H, Bunce M (2019) Experimental studies of the effect of ethanol auxiliary fuelled turbulent jet ignition in an optical engine. SAE Int J Engines 12(4):387–399. https://doi.org/10.4271/03-12-04-0026

    Article  Google Scholar 

  11. Catapano F, Di Iorio S, Luise L, Sementa P, Vaglieco BM (2019) Influence of ethanol blended and dual fueled with gasoline on soot formation and particulate matter emissions in a small displacement spark ignition engine. Fuel 245(June):253–262. https://doi.org/10.1016/j.fuel.2019.01.173

    Article  Google Scholar 

  12. Chow EW, Heywood JB, Speth RL (2014) Benefits of a higher octane standard gasoline for the U.S. light-duty vehicle fleet. SAE Technical Papers 1. https://doi.org/10.4271/2014-01-1961

  13. Chupka GM (2015) Heat of vaporization measurements for ethanol blends up to 50 volume percent in several hydrocarbon blendstocks and implications for knock in SI engines. SAE Int J Fuels Lubr 8(2):251–263. https://doi.org/10.4271/2015-01-0763

    Article  Google Scholar 

  14. Cornell JA (2011) A primer on experiments with mixtures. A primer on experiments with mixtures, no. Hoboken, NJ, USA, pp 1–351. https://doi.org/10.1002/9780470907443

  15. Costanzo V, Yu X, Chapman E, Davis R (2021) Fuel effects on the propensity to establish propagating flames at SPI-relevant engine conditions. SAE Technical Papers, no. 2021. https://doi.org/10.4271/2021-01-0488

  16. Dahmen M, Marquardt W (2017) Model-based formulation of biofuel blends by simultaneous product and pathway design. Energy Fuels 31(4):4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118

    Article  Google Scholar 

  17. Davis SC, Boundy RG (2022) Transportation energy data book edition 40

    Google Scholar 

  18. De Melo TCC, Machado GB, Belchior CR, Colaço MJ, Barros JE, de Oliveira EJ, de Oliveira DG (2012) Hydrous ethanol-gasoline blends-combustion and emission investigations on a flex-fuel engine. Fuel 97:796–804

    Google Scholar 

  19. Dempsey AB, Das Adhikary B, Viswanathan S, Reitz RD (2012) Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel. J Eng Gas Turbines Power 134(8)

    Google Scholar 

  20. Energy API (2010) Determination of the potential property ranges of mid-level ethanol blends. American Petroleum Institute, pp 1–108

    Google Scholar 

  21. El-Faroug MO, Yan F, Luo M, Turkson RF (2016) Spark ignition engine combustion, performance and emission products from hydrous ethanol and its blends with gasoline. Energies 2016:9

    Google Scholar 

  22. EPA (2020) The 2020 EPA automotive trends report. Epa

    Google Scholar 

  23. Fan Q, Wang Z, Qi Y, Wang Y (2019) Investigating auto-ignition behavior of n-Heptane/Iso-Octane/Ethanol mixtures for gasoline surrogates through rapid compression machine measurement and chemical kinetics analysis. Fuel 241:1095–1108. https://doi.org/10.1016/j.fuel.2018.12.112

    Article  Google Scholar 

  24. Foong TM, Morganti KJ, Brear MJ, Da Silva G, Yang Y, Dryer FL (2014) The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 115:727–739. https://doi.org/10.1016/j.fuel.2013.07.105

    Article  Google Scholar 

  25. Haenel P, Kleeberg H, de Bruijn R, Tomazic D (2017) Influence of ethanol blends on low speed pre-ignition in turbocharged. Dir Injection Gasoline Engines. https://doi.org/10.4271/2017-01-0687

    Article  Google Scholar 

  26. Hanson R, Curran S, Wagner R, Reitz R (2013) Effects of biofuel blends on RCCI combustion in a light-duty, multi-cylinder diesel engine. SAE Int J Engines 6(1):488–503. https://doi.org/10.4271/2013-01-1653

    Article  Google Scholar 

  27. He X, Zhou Y, Liu Z, Yang Q, Sjöberg M, Vuilleumier D, Ding CP, Liu F (2022) Impact of coolant temperature on the combustion characteristics and emissions of a stratified-charge direct-injection spark-ignition engine fueled with E30. Fuel 309(February):121913. https://doi.org/10.1016/j.fuel.2021.121913

    Article  Google Scholar 

  28. Hunwartzen I (1982) Modification of CFR test engine unit to determine octane numbers of pure alcohols and gasoline-alcohol blends. SAE technical papers 820002. https://doi.org/10.4271/820002

  29. Ilves R, Küüt A, Olt J (2019). Ethanol as internal combustion engine fuel. In: Angelo Basile Adolfo Iulianelli Francesco Dalena T. Nejat Veziroglu (ed) Ethanol, 1st edn. Science and Engineering. Elsevier, pp 215−229

    Google Scholar 

  30. Kalghatgi GT (2015) Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc Combust Inst 35(1):101–115. https://doi.org/10.1016/j.proci.2014.10.002

    Article  Google Scholar 

  31. Kalghatgi GT (2001a) Fuel anti-knock quality-part I. Engine studies. SAE technical papers, no. 724. https://doi.org/10.4271/2001-01-3584

  32. Kalghatgi GT (2001b) Fuel anti-knock quality-part II. Vehicle studies-how relevant is motor octane number (MON) in modern engines? SAE technical papers, no. 724. https://doi.org/10.4271/2001-01-3585

  33. Kalghatgi G, Risberg P, Ångstrom HE (2003) A method of defining ignition quality of fuels in HCCI engines. SAE Technical Papers. https://doi.org/10.4271/2003-01-1816

  34. Kalghatgi G (2013) Fuel/engine interactions. SAE International

    Google Scholar 

  35. Kar K (2009) Measurement of vapor pressures and enthalpies of vaporization of gasoline and ethanol blends and their effects on mixture preparation in an SI engine. SAE Int J Fuels Lubr 1(1):132–144. https://doi.org/10.4271/2008-01-0317

    Article  Google Scholar 

  36. Kasseris E, Heywood JB (2012b) Charge cooling effects on knock limits in SI DI engines using gasoline/ethanol blends: part 2-effective octane numbers. SAE Int J Fuels Lubr 5(2):844–854. https://doi.org/10.4271/2012-01-1284

    Article  Google Scholar 

  37. Kasseris E, Heywood JB (2012a) Charge cooling effects on knock limits in SI Di engines using gasoline/ethanol blends: part 1-quantifying charge cooling. SAE Technical Papers. https://doi.org/10.4271/2012-01-1275

  38. Köten H, Karagöz Y, Balcı Ö (2020) Effect of different levels of ethanol addition on performance, emission, and combustion characteristics of a gasoline engine. Adv Mech Eng 12(7):1–13. https://doi.org/10.1177/1687814020943356

    Article  Google Scholar 

  39. Leone TG (2014) Effects of fuel octane rating and ethanol content on knock, fuel economy, and CO2 for a turbocharged DI engine. SAE Int J Fuels Lubr 7(1):9–28. https://doi.org/10.4271/2014-01-1228

    Article  Google Scholar 

  40. Leone TG (2015) The effect of compression ratio, fuel octane rating, and ethanol content on spark-ignition engine efficiency. Environ Sci Technol 49(18):10778–10789. https://doi.org/10.1021/acs.est.5b01420

    Article  Google Scholar 

  41. Leppard WR (1990) The chemical origin of fuel octane sensitivity. SAE Technical Papers. https://doi.org/10.4271/902137

  42. MON, ASTM D2700-16. n.d. ASTM D2700-16 (2016) Standard test method for motor octane number of spark-ignition engine fuel. ASTM Int. https://doi.org/10.1520/D2700-16

  43. Malaquias ACT, Netto NAD, Filho FAR, da Costa RBR, Langeani M, Baêta JGC (2019) The misleading total replacement of internal combustion engines by electric motors and a study of the brazilian ethanol importance for the sustainable future of mobility: a review. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-2076-1

    Article  Google Scholar 

  44. Martins AA, Rocha RAD, Sodré JR (2014) Cold start and full cycle emissions from a flexible fuel vehicle operating with natural gas, ethanol and gasoline. J Nat Gas Sci Eng 17(March):94–98. https://doi.org/10.1016/j.jngse.2014.01.004

    Article  Google Scholar 

  45. Martins J, Brito FP (2020) Alternative fuels for internal combustion engines. Energies 13(15). https://doi.org/10.3390/en13164086

  46. Mehl M, Faravelli T, Giavazzi F, Ranzi E, Scorletti P, Tardani A, Terna D (2006) Detailed chemistry promotes understanding of octane numbers and gasoline sensitivity. Energy Fuels 20(6):2391–2398. https://doi.org/10.1021/ef060339s

    Article  Google Scholar 

  47. Meng L (2019) Ethanol in automotive applications. In: Angelo Basile Adolfo Iulianelli Francesco Dalena T. Nejat Veziroglu (ed) Ethanol, 1st edn. Science and Engineering. Elsevier, pp 289−302

    Google Scholar 

  48. Mittal V, Heywood JB (2008) The relevance of fuel RON and MON to knock onset in modern SI engines. SAE Technical Papers 2(2):1–10. https://doi.org/10.4271/2008-01-2414

  49. Monteiro Sales LC, Sodré JR (2012) Cold start characteristics of an ethanol-fuelled engine with heated intake air and fuel. Appl Therm Eng 40(July):198–201. https://doi.org/10.1016/j.applthermaleng.2012.01.057

    Article  Google Scholar 

  50. Morganti K, Viollet Y, Head R, Kalghatgi G, Al-Abdullah M, Alzubail A (2017) Maximizing the benefits of high octane fuels in spark-ignition engines. Fuel 207:470–487. https://doi.org/10.1016/j.fuel.2017.06.066

    Article  Google Scholar 

  51. Pan J, Ding Y, Tang R, Wang L, Wei H, Shu G (2022) Ethanol blending effects on auto-ignition and reaction wave propagation under engine-relevant conditions. SSRN Electron J. https://doi.org/10.2139/ssrn.4126116

    Article  Google Scholar 

  52. Patrick H, Kleeberg H, de Bruijn R, Tomazic D (2017) Influence of ethanol blends on low speed pre-ignition in turbocharged, direct-injection gasoline engines. SAE Int J Fuels Lubr 10(1):95–105. https://doi.org/10.4271/2017-01-0687

    Article  Google Scholar 

  53. Pawlowski A, Splitter D (2015) SI engine trends: a historical analysis with future projections. In: SAE 2015 world congress & exhibition. SAE International. https://doi.org/10.4271/2015-01-0972

  54. Prakash A, Cracknell R, Natarajan V, Doyle D, Jones A, Jo YS, Hinojosa M, Lobato P (2016) Understanding the octane appetite of modern vehicles. SAE Int J Fuels Lubr 9(2):345–357. https://doi.org/10.4271/2016-01-0834

    Article  Google Scholar 

  55. Prakash A, Wang C, Janssen A, Aradi A, Cracknell R (2017) Impact of fuel sensitivity (RON-MON) on engine efficiency. SAE Int J Fuels Lubr 10(1):115–125. https://doi.org/10.4271/2017-01-0799

    Article  Google Scholar 

  56. RON, ASTM D2699–19. n.d. ASTM D2699–19 (2016) Standard test method for research octane number of spark-ignition engine fuel. ASTM International. https://doi.org/10.1520/D2699-19

  57. Ratcliff MA, Windom B, Fioroni G M, St John P, Burke S, Burton J, Christensen ED, Sindler P, McCormick RL (2019) Impact of ethanol blending into gasoline on aromatic compound evaporation and particle emissions from a gasoline direct injection engine. Appl Energy 250:1618–1631

    Google Scholar 

  58. Risberg P, Kalghatgi G, Ångstrom HE (2003) Auto-ignition quality of gasoline-like fuels in HCCI engines. SAE Technical Papers, no. January. https://doi.org/10.4271/2003-01-3215

  59. Robertson D, Prucka R (2019) A review of spark-assisted compression ignition (SACI) Research in the context of realizing production control strategies. SAE Technical Papers 2019-Septe (September). https://doi.org/10.4271/2019-24-0027

  60. Sadiq MAR, Ali YK, Noor AR (2011) Effects of ethanol-gasoline blends on exhaust and noise emissions from 4-stroke S.I. Engine. Eng Technol J Univ Technol Iraq 29:1438–1450

    Google Scholar 

  61. Sakthivel P, Subramanian KA, Mathai R (2020) Experimental study on unregulated emission characteristics of a two-wheeler with ethanol-gasoline blends (E0 to E50). Fuel 262(February):116504. https://doi.org/10.1016/j.fuel.2019.116504

    Article  Google Scholar 

  62. Savelenko VD, Ershov MA, Kapustin VM, Chernysheva EA, Abdellatief TM, Makhova UA, Makhmudova AE, Abdelkareem MA, Olabi A (2022) Pathways resilient future for developing a sustainable E85 fuel and prospects towards its applications. Sci Total Environ 844:157069

    Google Scholar 

  63. Schifter IU, González L, Díaz R, Rodríguez I, Mejía-Centeno MCG (2018) From actual ethanol contents in gasoline to mid-blends and E-85 in conventional technology vehicles. Emission control issues and consequences. Fuel 219(May):239–247. https://doi.org/10.1016/j.fuel.2018.01.118

    Article  Google Scholar 

  64. Sjöberg M, John E (2011) Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol. SAE Technical Papers 5(1)

    Google Scholar 

  65. Stein RA (2012) Effect of heat of vaporization, chemical octane, and sensitivity on knock limit for ethanol—gasoline blends. SAE Int J Fuels Lubr 5(2):823–843. https://doi.org/10.4271/2012-01-1277

    Article  Google Scholar 

  66. Stein RA, Anderson JE, Wallington TJ (2013) An overview of the effects of ethanol-gasoline blends on SI engine performance, fuel efficiency, and emissions. SAE Int J Engines 6(1):470–487. https://doi.org/10.4271/2013-01-1635

    Article  Google Scholar 

  67. Szybist JP, Splitter DA (2018) Understanding chemistry-specific fuel differences at a constant RON in a boosted SI engine. Fuel 217:370–381. https://doi.org/10.1016/j.fuel.2017.12.100

    Article  Google Scholar 

  68. Thangavelu SK, Ahmed AS, Ani FN (2016) Review on bioethanol as alternative fuel for spark ignition engines. Renew Sustain Energy Rev 56:820e835

    Google Scholar 

  69. Thrän D, Naumann K, Billig E, Millinger M, Oehmichen K, Pfeiffer D, Zech K (2018) Data on biofuels production, trade and demand. In: Riazi MR, Chiaramonti D (eds) Biofuels production and processing technology. CRS Press, Taylor and Francis Group, pp 55–95

    Google Scholar 

  70. Venugopal T, Sharma A, Satapathy S, Ramesh A, Gajendra Babu M (2013) Experimental study of hydrous ethanol gasoline blend (E10) in a four stroke port fuel-injected spark ignition engine. Int J Energy Res 37:638–644

    Google Scholar 

  71. Wang X, Chen Z, Ni J, Liu S, Zhou H (2015) The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine. Case Stud Ther Eng 6:147–154

    Google Scholar 

  72. Waqas M, Naser N, Sarathy M, Morganti K, Al-Qurashi K, Johansson B (2016) Blending octane number of ethanol in HCCI, SI and CI combustion modes. SAE Int J Fuels Lubr 9(3):659–682. https://doi.org/10.4271/2016-01-2298

    Article  Google Scholar 

  73. Westbrook CK, Mehl M, Pitz WJ, Sjöberg M (2017) Chemical kinetics of octane sensitivity in a spark-ignition engine. Combust Flame 175:2–15. https://doi.org/10.1016/j.combustflame.2016.05.022

    Article  Google Scholar 

  74. Xie M, Li Q, Fu J, Yang H, Wang X, Liu J (2022) Chemical kinetic investigation on NOx emission of SI engine fueled with gasoline-ethanol fuel blends. Sci Total Environ 831(July):154870. https://doi.org/10.1016/j.scitotenv.2022.154870

    Article  Google Scholar 

  75. Yates ADB, Swarts A, Viljoen CL (2005) Correlating auto-ignition delays and knock-limited spark-advance data for different types of fuel. SAE Technical Papers. https://doi.org/10.4271/2005-01-2083

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risto Ilves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allmägi, R., Jansons, M., Ritslaid, K., Ilves, R. (2023). Ethanol Utilization in Spark-Ignition Engines and Emission Characteristics. In: Betiku, E., Ishola, M.M. (eds) Bioethanol: A Green Energy Substitute for Fossil Fuels. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-36542-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36542-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36541-6

  • Online ISBN: 978-3-031-36542-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics