Skip to main content

Cassirer and Klein on the Geometrical Foundations of Relativistic Physics

  • Chapter
  • First Online:
Philosophers and Einstein's Relativity

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 342))

  • 109 Accesses

Abstract

Several studies have emphasized the limits of invariance-based approaches such as Klein’s and Cassirer’s when it comes to account for the shift from the spacetimes of classical mechanics and of special relativity to those of general relativity. Not only is it much more complicated to find such invariants in the case of general relativity, but even if local invariants in Weyl’s fashion are admitted, Cassirer’s attempt at a further generalization of his approach to the spacetime structure of general relativity seems to obscure the fact that the determination of this structure requires a completely different approach that is derived from Riemann rather than Klein. This paper aims to reconsider these issues by drawing attention to the combination of subtractive and additive strategies (more in line with Riemann’s) in Klein’s own considerations about the determination of the structure of spacetime from 1897 to 1910. I will point out that Cassirer relied on Klein’s argument in some central passages from Substance and Function (1910), and elaborated further on his combined approach in Einstein’s Theory of Relativity (1921), also taking into account the application of Riemannian geometry in general relativity. My suggestion is that an appreciation of Cassirer’s continuing commitment to a variety of geometrical traditions may shed light on his particular understanding of a priori elements of knowledge and avoid some of the classical objections to the idea of a relativization of the a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On Cassirer’s role in this line of interpretation, see esp. Ryckman (1991, 2005, Ch. 2).

  2. 2.

    For a reconstruction of Einstein’s philosophy of science, see esp. Howard in Howard and Stachel (1989). For the analysis of the limits the subtractive strategy associated with invariance-based approaches, I will rely especially on Norton (1999).

  3. 3.

    Cayley in his “Sixth Memoir upon Quantics” (1859) had limited himself to show that his projective system included (Euclidean) metrical. Klein was the first to derive the non-Euclidean cases (i.e., elliptic and hyperbolic geometries).

  4. 4.

    Klein specified the second condition in the 1893 version of the paper. In the first version of 1872, he adopted Jordan’s (1870, p. 22) definition, which referred to finite groups of permutations. In that case, the first of the conditions above, along with the existence of a neutral element, is sufficient for the set to form a group. Afterwards, Sophus Lie drew Klein’s attention to the fact that the existence of an inverse operation is required in the case of infinite groups. It is noteworthy that both Galois and Jordan dealt with groups of permutations. Klein showed that the same conditions for permutations to form a group generally apply to groups of operations. In this sense, his Erlangen Program can be considered a fundamental step in the development of the abstract concept of group (Wussing 1984).

  5. 5.

    On Klein’s relationship to Lie, see Hawkins (1984) and Rowe (1989).

  6. 6.

    Klein’s first job, before turning to purely mathematical research, was to set up and carry out demonstrations accompanying Julius Plücker’s lectures in experimental physics. Klein worked as Julius Plücker’s assistant at the University of Bonn from 1866 to 1868. When Plücker died, in 1868, Alfred Clebsch appointed Klein at Göttingen to complete the posthumous edition of Plücker’s work on line geometry. This position enabled Klein to move into the circle of algebraic geometers inspired by Clebsch. On the development of Klein’s thought in the early stages of Klein’s career, see Rowe (1992) and Gray (2008).

  7. 7.

    All translations from Klein’s texts are my own, unless otherwise indicated.

  8. 8.

    Klein’s review appeared in Mathematische Annalen in 1898.

  9. 9.

    Helmholtz’s role in the philosophical background of GR has been emphasised in different ways in the literature. See esp. Coffa (1991), Friedman (1999), Ryckman (2005), DiSalle (2008). On Helmholtz’s influence on Cassirer’s earlier generalizing strategy before 1921, see Biagioli (2016).

  10. 10.

    For a thorough discussion of Cassirer’s stance within the philosophical debate on GR, see Ferrari (1991), Ryckman (1991, 2005).

  11. 11.

    For a reconstruction of Einstein’s philosophy of science and further references, see esp. Howard and Giovanelli (2019).

  12. 12.

    Cf. Biagioli (2020) for a reconstruction of Cassirer’s argument elucidating the dynamical aspect of Cassirer’s notion of coordination.

  13. 13.

    See Friedman (2001, Ch. 3) for an account of Habermas’s distinction and for the idea to integrate the relativized a priori with the Habermasian notion of communicative rationality for a comprehensive account of the dynamics of reason throughout the history of the sciences.

  14. 14.

    Several studies have shown that Cassirer, and his Marburg teachers before him, did attribute a constitutive function to a priori structures of scientific experience while introducing a dynamical dimension at some level of scientific conceptualization (see esp. Ferrari 2012; Giovanelli 2016; Biagioli 2020).

References

  • Biagioli, F. 2016. Space, Number, and Geometry from Helmholtz to Cassirer. Cham: Springer.

    Book  Google Scholar 

  • ———. 2020. Ernst Cassirer’s Transcendental Account of Mathematical Reasoning. Studies in History and Philosophy of Science Part A 79 (2020): 30–40.

    Article  Google Scholar 

  • Cassirer, E. 1910. Substanzbegriff und Funktionsbegriff: Untersuchungen über die Grundfragen der Erkenntniskritik. Berlin: B. Cassirer. English edition in Cassirer, E. 1923. Substance and Function and Einstein's Theory of Relativity. Trans. M. C. Swabey, and W. C. Swabey. Chicago: Open Court, 1–346.

    Google Scholar 

  • ———. 1921. Zur Einstein’schen Relativitätstheorie: Erkenntnistheoretische Betrachtungen, 347–465. Berlin: B. Cassirer. English edition in Cassirer E. 1923. Substance and Function and Einstein's Theory of Relativity. Trans. M. C. Swabey, and W. C. Swabey. 347–465, Chicago: Open Court.

    Google Scholar 

  • ———. 1936. Determinismus und Indeterminismus in der modernen Physik: Historische und systematische Studien zum Kausalproblem. Göteborg: Göteborgs Högskolas Årsskrift 42. English edition: Cassirer, Ernst. 1956. Determinism and Indeterminism in Modern Physics: Historical and Systematic Studies of the Problem of Causality. New Haven: Yale Univ. Press.

    Google Scholar 

  • ———. 1944. The Concept of Group and the Theory of Perception. Philosophy and Phenomenological Research 5: 1–36.

    Article  Google Scholar 

  • ———. 1950. The Problem of Knowledge: Philosophy, Science, and History since Hegel. Trans. W. H. Woglam, and C. W. Hendel. New Haven: Yale Univ. Press.

    Google Scholar 

  • Coffa, A. J. 1991. The Semantic Tradition from Kant to Carnap: To the Vienna Station. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • DiSalle, R. 2008. Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein. Cambridge: Cambridge University Press.

    Google Scholar 

  • Einstein, A. 1916. Die Grundlagen der allgemeinen Relativitätstheorie. Annalen der Physik 49: 769–822. English edition: Einstein, A. 1923. The Foundation of the General Theory of Relativity. Trans. G. B. Jeffrey and W. Perrett. In The Principle of Relativity, ed. H.A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, 111–164. London: Methuen.

    Google Scholar 

  • Ferrari, M. 1991. Cassirer, Schlick e l’interpretazione ‘kantiana’ della teoria della relatività. Rivista di filosofia 82: 243–278.

    Google Scholar 

  • ———. 2012. Between Cassirer and Kuhn: Some Remarks on Friedman’s Relativized A Priori. Studies in History and Philosophy of Science Part A 43: 18–26.

    Article  Google Scholar 

  • Friedman, M. 1999. Reconsidering Logical Positivism. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • ———. 2001. Dynamics of Reason: The 1999 Kant Lectures at Stanford University. Stanford: CSLI Publications.

    Google Scholar 

  • ———. 2002. Geometry as a branch of physics: Background and context for Einstein's `Geometry and experience'. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, ed. D. B. Malament, 193–229. Chicago: Open Court.

    Google Scholar 

  • ———. 2005. Ernst Cassirer and Contemporary Philosophy of Science. Angelaki Journal of Theoretical Humanities 10 (1): 119–128.

    Google Scholar 

  • Giovanelli, M. 2016. Zwei Bedeutungen des Apriori‘. Hermann Cohens Unterscheidung zwischen metaphysischem und transzendentalem a priori und die Vorgeschichte des relativierten a priori. In Philosophie und Wissenschaft bei Hermann Cohen/Philosophy and Science in Hermann Cohen, ed. C. Damböck, 177–204. Cham: Springer.

    Google Scholar 

  • Gray, J. J. 2008. Plato’s Ghost: The Modernist Transformation of Mathematics. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Hawkins, T. 1984. The Erlanger Program of Felix Klein: Reflections on Its Place in the History of Mathematics. Historia Mathematica 11: 442–470.

    Article  Google Scholar 

  • Helmholtz, H. v. 1878. Die Tatsachen in der Wahrnehmung. In Schriften zur Erkenntnistheorie, ed. P. Hertz and M. Schlick, 109–152. Berlin: Springer, 1921. English edition as Epistemological writings (Trans: Lowe, M. F., ed. R. S. Cohen and Y. Elkana). Dordrecht: Reidel, 1977.

    Google Scholar 

  • Howard, D. 2005. “No Crude Surfeit”: Ryckman’s Reign of Relativity. Pacific APA, March 2005.

    Google Scholar 

  • Howard, D., and M. Giovanelli. 2019. Einstein’s Philosophy of Science. Stanford Encyclopedia of Philosophy, ed. E.N. Zalta and U. Nodelman. Accessed on 22 July 2023: https://plato.stanford.edu/entries/einstein-philscience/

  • Howard, D., and J. Stachel, eds. 1989. Einstein and the History of General Relativity. Boston: Birkhäuser.

    Google Scholar 

  • Jordan, C. 1870. Traité des substitutions et des équations algébriques. Paris: Gauthier-Villars.

    Google Scholar 

  • Klein, F. 1871. Über die sogenannte Nicht-Euklidische Geometrie. Mathematische Annalen 4: 573–625.

    Article  Google Scholar 

  • ———. 1872. Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert. English version: Klein, F. (1892). A Comparative Review of Recent Researches in Geometry. Trans. Maella W. Haskell. Bulletin of the New York Mathematical Society 2 (1892–1893): 215–49.

    Google Scholar 

  • ———. 1890. Zur Nicht-Euklidischen Geometrie. Mathematische Annalen 37: 544–572.

    Article  Google Scholar 

  • ———. 1898. Gutachten, betreffend den dritten Band der Theorie der Transformationsgruppen von S. Lie anlässlich der ersten Vertheilung des Lobatschewsky-Preises. Mathematische Annalen 50: 583–600.

    Article  Google Scholar 

  • ———. 1909. Elementarmathematik vom höheren Standpunkte aus. Vol. 2: Geometrie. Leipzig: Teubner.

    Google Scholar 

  • ———. 1911. Über die geometrischen Grundlagen der Lorentzgruppe. Physikalische Zeitschrift 12: 17–27.

    Google Scholar 

  • ———. 1921. Gesammelte mathematische Abhandlungen. Vol. 1. Berlin: Springer.

    Book  Google Scholar 

  • Norton, J. 1999. Geometries in Collision: Einstein, Klein, and Riemann. In The Symbolic Universe: Geometry and Physics 1890–1930, ed. J. J. Gray, 128–144. Oxford: Oxford University Press.

    Google Scholar 

  • Poincaré, H. 1902. La science et l’hypothèse. Paris: Flammarion.

    Google Scholar 

  • Reichenbach, H. 1920. Relativitätstheorie und Erkenntnis apriori. Berlin: Springer. English edition as: The Theory of Relativity and A Priori Knowledge. Trans. M. Reichenbach. Berkeley: University of California Press, 1965.

    Book  Google Scholar 

  • Rowe, D. 1989. The Early Geometrical Works of Sophus Lie and Felix Klein. In History of Modern Mathematics. Vol. 1: Ideas and Their Reception, ed. D. E. Rowe and J. McCleary, 209–273. Boston: Academic.

    Google Scholar 

  • ———. 1992. Klein, Lie, and the Erlanger Programm. In 1830–1930: A Century of Geometry, Epistemology, History and Mathematics, ed. L. Boi, D. Flament, and J.-M. Salanskis, 45–54. Berlin: Springer.

    Chapter  Google Scholar 

  • Ryckman, T. 1991. Conditio Sine qua Non? Zuordnung in the Early Epistemologies of Cassirer and Schlick. Synthese 88: 57–95.

    Google Scholar 

  • ———. 2005. The Reign of Relativity: Philosophy in Physics, 1915–1925. New York: Oxford University Press.

    Book  Google Scholar 

  • ———. 2018. Cassirer and Dirac on the Symbolic Method in Quantum Mechanics: A Confluence of Opposites. In Journal for the History of Analytical Philosophy 6.3: Method, Science, and Mathematics: Neo-Kantianism and Analytic Philosophy, ed. S. Edgar and L. Patton, 213–243.

    Google Scholar 

  • Schiemer, G. 2020. Transfer Principles, Klein’s Erlangen Program, and Methodological Structuralism. In The Prehistory of Mathematical Structuralism, ed. E. Reck and G. Schiemer, 106–141. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Schlick, M. 1921. Kritizistische oder empiristische Deutung der neuen Physik? Bemerkungen zu Ernst Cassirers Buch Zur Einstein’schen Relativitätstheorie. Kant-Studien 26: 96–111.

    Article  Google Scholar 

  • Stump, D. 2015. Conceptual Change and the Philosophy of Science: Alternative Interpretations of the a priori. London: Routledge.

    Book  Google Scholar 

  • Wussing, H. 1984. The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory. Trans. A. Shenitzer. Cambridge, Mass.: The MIT Press.

    Google Scholar 

Download references

Acknowledgments

This research has received funding from the “Rita Levi Montalcini” program granted by the Italian Ministry of University and Research (MUR). I would like to thank the editors of this collection and an anonymous referee for their helpful comments on a previous draft of this paper. I also wish to remark that the current paper is my own work, and no one else is responsible for any mistakes in it.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biagioli, F. (2023). Cassirer and Klein on the Geometrical Foundations of Relativistic Physics. In: Russo Krauss, C., Laino, L. (eds) Philosophers and Einstein's Relativity. Boston Studies in the Philosophy and History of Science, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-031-36498-3_4

Download citation

Publish with us

Policies and ethics