Skip to main content

Ribonucleases for Sequencing and Characterization of RNA by LC–MS

  • Chapter
  • First Online:
RNA Structure and Function

Part of the book series: RNA Technologies ((RNATECHN,volume 14))

Abstract

The global deployment of mRNA vaccines against SARS-CoV-2 and the projected expansion of therapeutic applications of synthetic mRNA call for robust and high-precision analytical methods to evaluate attributes that are crucial to the safety and efficacy of the mRNA drug substances. Liquid chromatography–mass spectrometry (LC–MS) is one of the few techniques that can provide a direct and high-confidence readout of the identity and incorporation efficiency of the 5′ cap, length of the poly(A) tail, nucleotide sequence, and modification profile of synthetic mRNA molecules. Prior to LC–MS analysis, the RNA molecules are partially digested by specific endoribonucleases into oligonucleotides that are suitable for charge state-dependent fragmentation and mass deconvolution. The most commonly used endoribonuclease for RNA sequence mapping is the guanosine-specific RNase T1. RNase T1 has been employed for analysis of mRNA, rRNA, and tRNA as well as for mRNA poly(A) tail length verification. For mRNA 5′ cap analysis, selective excisions using probe-restrained RNase H or (deoxy)ribozymes are typically required. In this chapter, we will review the application of endoribonucleases for mRNA analysis, with emphasis on a recently characterized endoribonuclease derived from human RNase 4. We will also discuss the latest methods to assess 5′ cap and poly(A) tail incorporation in synthetic mRNA. Finally, we will highlight why more enzymatic tools are needed and how they can contribute to improving the quality of synthetic RNA analysis, and to help understand the biology of RNA modifications in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beverly M, Dell A, Parmar P et al (2016) Label-free analysis of mRNA capping efficiency using RNase H probes and LC–MS. Anal Bioanal Chem 408:5021–5030

    Article  CAS  PubMed  Google Scholar 

  • Beverly M, Hagen C, Slack O (2018) Poly A tail length analysis of in vitro transcribed mRNA by LC–MS. Anal Bioanal Chem 410:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Bird JG, Basu U, Kuster D et al (2018) Highly efficient 5′ capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase. Elife 7:e42179

    Article  PubMed  PubMed Central  Google Scholar 

  • Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  CAS  PubMed  Google Scholar 

  • Broccoli S, Rallu F, Sanscartier P et al (2004) Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation. Mol Microbiol 52:1769–1779

    Article  CAS  PubMed  Google Scholar 

  • Brouze A, Krawczyk PS, Dziembowski A et al (2022) Measuring the tail: Methods for poly(A) tail profiling. Wiley Interdiscip Rev RNA e1737

    Google Scholar 

  • Cairns MJ, King A, Sun L (2003) Optimisation of the 10–23 DNAzyme–substrate pairing interactions enhanced RNA cleavage activity at purine–cytosine target sites. Nucleic Acids Res 31:2883–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Flores R, Gago S (2011) Trans -cleaving hammerhead ribozymes with tertiary stabilizing motifs: In vitro and in vivo activity against a structured viroid RNA. Nucleic Acids Res 39:2432–2444

    Article  CAS  PubMed  Google Scholar 

  • Chan SH, Whipple JM, Dai N et al (2022) RNase H-based analysis of synthetic mRNA 5′ cap incorporation. RNA (new York, NY) 28:1144–1155

    Article  CAS  Google Scholar 

  • Chang H, Lim J, Ha M, Kim VN (2014) TAIL-seq: Genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 53:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • D’Ascenzo L, Popova AM, Abernathy S et al (2022) Pytheas: A software package for the automated analysis of RNA sequences and modifications via tandem mass spectrometry. Nat Commun 13:2424

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolgin E (2021) The tangled history of mRNA vaccines. Nature 597:318–324

    Article  CAS  PubMed  Google Scholar 

  • Ferré-D’Amaré AR, Doudna JA (1996) Use of Cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs A-L, Neu A, Sprangers R (2016) A general method for rapid and cost-efficient large-scale production of 5′ capped RNA. RNA 22:1454–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonatopoulos-Pournatzis T, Cowling VH (2014) Cap-binding complex (CBC). Biochem J 457:231–242

    Article  CAS  PubMed  Google Scholar 

  • Goyon A, Scott B, Kurita K et al (2021) Full sequencing of CRISPR/Cas9 single guide RNA (sgRNA) via parallel ribonuclease digestions and hydrophilic interaction liquid chromatography–high-resolution mass spectrometry analysis. Anal Chem 93:14792–14801

    Article  CAS  PubMed  Google Scholar 

  • Grünberg S, Wolf EJ, Jin J et al (2022) Enhanced expression and purification of nucleotide-specific ribonucleases MC1 and Cusativin. Protein Expres Purif 190:105987

    Article  Google Scholar 

  • Henderson JM, Ujita A, Hill E et al (2021) Cap 1 messenger RNA synthesis with co-transcriptional CleanCap® analog by in vitro transcription. Curr Protoc 1:e39

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Limbach PA (2007) Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products. RNA 13:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Zhong L, Weng Y et al (2020) Therapeutic siRNA: State of the art. Signal Transduct Target Ther 5:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde JL, Diamond MS (2015) Innate immune restriction and antagonism of viral RNA lacking ‘2-O methylation. Virology 479:66–74

    Article  PubMed  Google Scholar 

  • Jalkanen AL, Coleman SJ, Wilusz J (2014) Determinants and implications of mRNA poly(A) tail size—Does this protein make my tail look big? Semin Cell Dev Biol 34:24–32

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Yu N, Kim J et al (2019) Oligonucleotide sequence mapping of large therapeutic mRNAs via parallel ribonuclease digestions and LC–MS/MS. Anal Chem 91:8500–8506

    Article  CAS  PubMed  Google Scholar 

  • Karikó K, Muramatsu H, Welsh FA et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  PubMed  Google Scholar 

  • Lapham J, Crothers DM (1996) RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. RNA New York NY 2:289–296

    CAS  Google Scholar 

  • Liu Y, Nie H, Liu H et al (2019) Poly(A) inclusive RNA isoform sequencing (PAIso−seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat Commun 10:5292

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Kato Y, Sekiguchi Y et al (2016a) Characterization of MazF-mediated sequence-specific RNA cleavage in pseudomonas putida using massive parallel sequencing. PLoS ONE 11:e0149494

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Yokota A, Tsuneda S et al (2016b) AAU-specific RNA cleavage mediated by MazF toxin endoribonuclease conserved in nitrosomonas Europaea. Toxins 8:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Mugridge JS, Tibble RW, Ziemniak M et al (2018) Structure of the activated Edc1-Dcp1-Dcp2-Edc3 mRNA decapping complex with substrate analog poised for catalysis. Nat Commun 9:1152

    Article  PubMed  PubMed Central  Google Scholar 

  • Nwokeoji AO, Earll ME, Kilby PM et al (2019) High resolution fingerprinting of single and double-stranded RNA using ion-pair reverse-phase chromatography. J Chromatogr B 1104:212–219

    Article  CAS  Google Scholar 

  • Parajuli S, Teasley DC, Murali B et al (2017) Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork. J Biol Chem 292:15216–15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi N, Hogan MJ, Porter FW et al (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17:261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Tonnu N, Tachikawa K et al (2017) Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc National Acad Sci USA 114:E1941–E1950

    Article  CAS  Google Scholar 

  • Roberts RJ (2005) How restriction enzymes became the workhorses of molecular biology. Proc National Acad Sci USA 102:5905–5908

    Article  CAS  Google Scholar 

  • Strezsak SR, Pimentel AJ, Hill IT et al (2022) Novel mobile phase to control charge states and metal adducts in the LC/MS for mRNA characterization assays. ACS Omega 7:22181–22191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons RH (1997) Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res 25:2683–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin F, Rudin CM, Sen T (2020) CRISPR gene therapy: Applications, limitations, and implications for the future. Frontiers Oncol 10:1387

    Article  Google Scholar 

  • VanBlargan LA, Himansu S, Foreman BM et al (2018) An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell Rep 25:3382-3392.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhinsbergh CJ, Criscuolo A, Sutton JN et al (2022) Characterization and sequence mapping of large RNA and mRNA therapeutics using mass spectrometry. Anal Chem 94:7339–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlatkovic I, Ludwig J, Boros G et al (2022) Ribozyme assays to quantify the capping efficiency of in vitro-transcribed mRNA. Pharm 14:328

    CAS  Google Scholar 

  • Wein S, Andrews B, Sachsenberg T et al (2020) A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat Commun 11:926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf EJ, Grünberg S, Dai N et al (2022) Human RNase 4 improves mRNA sequence characterization by LC–MS/MS. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac632

    Article  PubMed  PubMed Central  Google Scholar 

  • Yolu̧c Y, Ammann G, Barraud P, et al (2021) Instrumental analysis of RNA modifications enhanced reader. Crit Rev Biochem Mol Biol 56:178–204

    Article  PubMed  Google Scholar 

  • Yu YT, Shu MD, Steitz JA (1997) A new method for detecting sites of 2′-O-methylation in RNA molecules. RNA (new York, NY) 3:324–331

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hong Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corrêa, I.R., Wolf, E.J., Yigit, E., Chan, S.H. (2023). Ribonucleases for Sequencing and Characterization of RNA by LC–MS. In: Barciszewski, J. (eds) RNA Structure and Function. RNA Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-36390-0_27

Download citation

Publish with us

Policies and ethics