Skip to main content

Incorporation of Pseudouridine into RNA for Biochemical and Biophysical Studies

  • Chapter
  • First Online:
RNA Structure and Function

Part of the book series: RNA Technologies ((RNATECHN,volume 14))

  • 659 Accesses

Abstract

Modification of RNA molecules has a significant effect on their structure and function. Many different examples of RNA modifications have been observed and each contributes in various ways to ensure proper biological activity. One of the most common modifications is pseudouridine which occurs in key dynamic locations in many RNAs. Despite its prevalence in natural RNA sequences, organic synthesis of pseudouridine has been challenging because of the stereochemistry requirement and the sensitivity of reaction steps to moisture. Herein, we describe the semi-enzymatic synthetic route for the synthesis of pseudouridine using adenosine-5’-monophosphate and uracil as the starting materials and a reverse reaction catalyzed by a pseudouridine monophosphate glycosidase. Moreover, we describe the conversion from nucleoside (pseudouridine) to nucleotide triphosphate (pseudouridine-5’-triphosphate) to incorporate into RNA via in vitro transcription for biochemical and biophysical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Bis(2-acetoxyethoxy)methyl

AMP:

Adenosine-5′-Monophosphate

DMT:

Dimethoxytrityl

Et3NHHCO3:

Triethylammonium Bicarbonate

(HNBu3)2H2P2O7:

bis-(Tri-n-butylammonium)pyrophosphate

NTP:

Nucleoside Triphosphate

POCl3:

Phosphorous Oxychloride

PSCl3:

Thiophosphoryl Chloride

R5P:

Ribose-5′-Phosphate

Ψ:

Pseudouridine

ΨMP:

Pseudouridine-5′-Monophosphate

ΨMP Glycosidase:

Pseudouridine Monophosphate Glycosidase

Ψ Synthase:

Pseudouridine Synthase

ΨTP:

Pseudouridine-5′-Triphosphate

snoRNA:

Small Nucleolar RNA

snoRNP:

Small Nucleoprotein Particle

TBDMS:

tert-Butyldimethylsilyl

TFAA:

Trifluoroacetic Anhydride

TLR7:

Toll-like Receptor 7

TOM:

2′-O-triisopropylsilyloxymethyl

References

  • Anderson BR, Muramatsu H, Nallagatla SR et al (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892

    Google Scholar 

  • Andries O, Mc Cafferty S, De Smedt SC et al (2015) N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Controlled Release 217:337–344

    Article  CAS  PubMed  Google Scholar 

  • Bhutani SP (2020) Chemistry of Biomolecules. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bousquet-Antonelli C, Henry Y, G’Elugne JP et al (1997) A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J 16:4770–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brimacombe R, Mitchell P, Osswald M et al (1993) Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J 7:161–167

    Article  CAS  PubMed  Google Scholar 

  • Burgess K, Cook D (2000) Syntheses of nucleoside triphosphates. Chem Rev 100:2047–2060

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Herath J, Wang TH et al (2008) Synthesis and solution conformation studies of 3-substituted uridine and pseudouridine derivatives. Bioorg Med Chem 16:2676–2686

    Article  CAS  PubMed  Google Scholar 

  • Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341–351

    Article  CAS  PubMed  Google Scholar 

  • Cohn WE (1960) Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: isolation, structure, and chemical characteristics. J Biol Chem 235:1488–1498

    Article  CAS  PubMed  Google Scholar 

  • Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23:5020–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis DR, Poulter CD (1991) 1H–15N NMR studies of Escherichia coli tRNAPhe from hisT mutants: a structural role for pseudouridine. Biochemistry 30:4223–4231

    Article  CAS  PubMed  Google Scholar 

  • Drahovsky D, Winkler A, Skoda J (1964) Increased Urinary Pseudouridine Excretion in Rats Following Irradiation. Nature 201:411–412

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Zheng MH, Zheng YF et al (2005) Normal and modified urinary nucleosides represent novel biomarkers for colorectal cancer diagnosis and surgery monitoring. J Gastroenterol Hepatol 20:1913–1919

    Article  PubMed  Google Scholar 

  • Foster PG, Huang L, Santi DV et al (2000) The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Nat Struct Biol 7:23–27

    Article  CAS  PubMed  Google Scholar 

  • Francis AJ, Resendiz MJE (2017) Protocol for the Solid-phase Synthesis of Oligomers of RNA Containing a 2’-O-thiophenylmethyl Modification and Characterization via Circular Dichroism. J vis Exp 28:e56189

    Google Scholar 

  • Grohar PJ, Chow CS (1999) A Practical Synthesis of the Modified RNA Nucleoside Pseudouridine. Tet Lett 40:2049–2052

    Article  CAS  Google Scholar 

  • Gu X, Liu Y, Santi DV (1999) The mechanism of pseudouridine synthase I as deduced from its interaction with 5-fluorouracil-tRNA. Proc Natl Acad Sci USA 96:14270–14275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanessian S, Machaalani R (2003) A highly stereocontrolled and efficient synthesis of α- and β-pseudouridines. Tetrahedron Lett 44:321–8323

    Article  Google Scholar 

  • Huang S, Mahanta N, Begley TP et al (2012) Pseudouridine monophosphate glycosidase: a new glycosidase mechanism. Biochemistry 51:9245–9255

    Article  CAS  PubMed  Google Scholar 

  • Hurd RE, Reid BR (1977) NMR spectroscopy of the ring nitrogen protons of uracil and substituted uracils; relevance to AΨ base pairing in the solution structure of transfer RNA. Nucleic Acids Res 4:2747–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonkhout N, Tran J, Smith MA et al (2017) The RNA modification landscape in human disease. RNA 23:1754–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafontaine DL, Tollervey D (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 23:383–388

    Article  CAS  PubMed  Google Scholar 

  • Lerch U, Burdon MG, Moffatt JG (1971) C-glycosyl nucleosides. I. Studies on the synthesis of pseudouridine and related compounds. J Org Chem 36:1507–1513

    Article  CAS  PubMed  Google Scholar 

  • Ludwig J, Eckstein F (1989) Rapid and efficient synthesis of nucleoside 5’-o-(1-thiotriphosphates), 5’-triphosphates and 2’,3’-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J Org Chem 54:631–635

    Article  CAS  Google Scholar 

  • Maden EH, Wakeman JA (1988) Pseudouridine distribution in mammalian 18S ribosomal RNA. A major cluster in the central region of the molecule. Biochem J 249:459–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meroueh M, Grohar PJ, Qiu J et al (2000) Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res 28:2075–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  CAS  PubMed  Google Scholar 

  • Mitsui T, Kitamura A, Kimoto M et al (2003) An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. J Am Chem Soc 125:5298–5307

    Article  CAS  PubMed  Google Scholar 

  • Mohamady S, Jakeman DL (2005) An improved method for the synthesis of nucleoside triphosphate analogues. J Org Chem 70:10588–10591

    Article  CAS  PubMed  Google Scholar 

  • Nance KD, Meier, JL (2021) Modifications in an emergency: the role of N1-Methylpseudouridine in COVID-19 vaccines. ACS Cent Sci 7:748–756

    Google Scholar 

  • Neumann JM, Bernassau JM, Gueron M et al (1980) Comparative conformations of uridine and pseudouridine and their derivatives. Euro J Biochem 108:457–463

    Article  CAS  Google Scholar 

  • Newby MI, Greenbaum NL (2002) Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proc Natl Acad Sci USA 99:12697–12702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofengand J (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 514:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ofengand J, Bakin A, Wrzesinski J et al (1995) The pseudouridine residues of ribosomal RNA. Biochem Cell Biol 73:915–924

    Article  CAS  PubMed  Google Scholar 

  • Pardi N, Hogan MJ, Naradikian MS et al (2018) Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 215:1571–1588

    Google Scholar 

  • Penzo M, Guerrieri AN, Zacchini F et al (2017) RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes (basel) 8:301

    Article  PubMed  Google Scholar 

  • Preumont A, Snoussi K, Stroobant V et al (2008) Molecular identification of pseudouridine-metabolizing enzymes. J Biol Chem 283:25238–25246

    Article  CAS  PubMed  Google Scholar 

  • Rafels-Ybern A, Torres AG, Grau-Bove X et al (2018) Codon adaptation to tRNAs with Inosine modification at position 34 is widespread among Eukaryotes and present in two Bacterial phyla. RNA Biol 15:500–507

    Article  PubMed  Google Scholar 

  • Ramanathan A, Robb GB, Chan SH (2016) mRNA capping: biological functions and applications. Nucleic Acids Res 44:7511–7526

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley AT, Sanford TC, Woodard AM et al (2021) Semi-enzymatic synthesis of pseudouridine. Bioorg Med Chem Lett 44:128105

    Article  CAS  PubMed  Google Scholar 

  • Rintala-Dempsey AC, Kothe U (2017) Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 14:1185–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Roundtree IA, Evans ME, Pan T et al (2017) Dynamic RNA Modifications in Gene Expression Regulation. Cell 169:1187–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaringe SA (2000) Advanced 5’-silyl-2’-orthoester approach to RNA oligonucleotide synthesis. Methods Enzymol 317:3–18

    Article  CAS  PubMed  Google Scholar 

  • Schaefer M, Kapoor U, Jantsch MF (2017) Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol 7

    Google Scholar 

  • Shapiro R, Chambers RW (1961) Synthesis of Pseudouridine. J Am Chem Soc 83:3920–3921

    Article  CAS  Google Scholar 

  • Spenkuch F, Motorin Y, Helm M (2014) Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 11:1540–1554

    Article  PubMed  Google Scholar 

  • Stockert JA, Weil R, Yadav KK et al (2021) Pseudouridine as a novel biomarker in prostate cancer. Urol Oncol 39:63–71

    Article  CAS  PubMed  Google Scholar 

  • Tamura S, Fujioka H, Nakano T et al (1988) Urinary pseudouridine as a biochemical marker in the diagnosis and monitoring of primary hepatocellular carcinoma. Am J Gastroenterol 83:841–845

    CAS  PubMed  Google Scholar 

  • Thapa K, Oja T, Metsa-Ketela M (2014) Molecular evolution of the bacterial pseudouridine-5’-phosphate glycosidase protein family. FEBS J 281:4439–4449

    Article  CAS  PubMed  Google Scholar 

  • Yarian CS, Basti MM, Cain RJ et al (1999) Structural and functional roles of the N1- and N3-protons of Ψ at tRNA’s position 39. Nucleic Acids Res 27:3543–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa M, Kato T, Takenishi T (1967) A novel method for phosphorylation of nucleosides to 5’-nucleotides. Tet Lett 8:5065–5068

    Article  Google Scholar 

  • Yu YT, Meier UT (2014) RNA-guided isomerization of uridine to pseudouridine–pseudouridylation. RNA Biol 11:1483–1494

    Article  PubMed  Google Scholar 

  • Zhao Y, Dunker W, Yu YT et al (2018) The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Front Bioeng Biotechnol 6:8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by faculty startup funds and graduate student research grants from Southern Illinois University Edwardsville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minako Sumita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanford, T., Riley, A., Clawson, M., Raasch, K., Oyebamiji, R., Sumita, M. (2023). Incorporation of Pseudouridine into RNA for Biochemical and Biophysical Studies. In: Barciszewski, J. (eds) RNA Structure and Function. RNA Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-36390-0_25

Download citation

Publish with us

Policies and ethics