Skip to main content

Nanoplastic Sources, Characterization, Ecological Impact, Remediation and Policies

  • Chapter
  • First Online:
Microplastic Occurrence, Fate, Impact, and Remediation

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 73))

  • 284 Accesses

Abstract

The presence of plastic in abundance in the environment has been confirmed, and scientists are taking measures to assess the accumulation of macroplastic and microplastic in populated and remote locations. Here we review microplastics and nanoplastics with focus on sources, characterization, ecological impact and toxicity, remediation, and policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alencastro D (2012) Pollution due to plastics and microplastics in Lake Geneva and in the Mediterranean Sea. Arch Sci 65:157–164

    Google Scholar 

  • Allen S, Allen D, Moss K et al (2020) Examination of the ocean as a source for atmospheric microplastics. PLoS One 15:e0232746

    CAS  PubMed Central  Google Scholar 

  • Ambrose KK, Box C, Boxall J et al (2019) Spatial trends and drivers of marine debris accumulation on shorelines in South Eleuthera, The Bahamas using citizen science. Mar Pollut Bull 142:145–154

    CAS  Google Scholar 

  • Atugoda T, Piyumali H, Wijesekara H et al (2023) Nanoplastic occurrence, transformation and toxicity: a review. Environ Chem Lett 21:363–381. https://doi.org/10.1007/s10311-022-01479-w

    Article  CAS  Google Scholar 

  • Barboza LGA, Dick Vethaak A, Lavorante BRBO et al (2018) Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336–348

    CAS  Google Scholar 

  • Barnes KK, Kolpin DW, Furlong ET et al (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I groundwater. Sci Total Environ 402:192–200

    CAS  Google Scholar 

  • Baruah S, Khan MN, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1–4

    CAS  Google Scholar 

  • Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific central gyre. Mar Pollut Bull 60:2275–2278

    CAS  Google Scholar 

  • Borrelle SB, Ringma J, Law KL et al (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369:1515–1518

    CAS  Google Scholar 

  • Bratovcic A (2019) Degradation of Micro- and Nano-plastics by Photocatalytic Methods. J Nanosci Nanotechnol Appl 3:304

    CAS  Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS et al (2008) Ingested microscopic plastic Translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031

    CAS  Google Scholar 

  • Campanale C, Massarelli C, Bagnuolo G et al (2019) The problem of microplastics and regulatory strategies in Italy. In: The handbook of environmental chemistry. Springer International Publishing, Cham, pp 255–276

    Google Scholar 

  • Chen W, Pan S, Cheng H et al (2018) Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Res 137:211–219

    CAS  Google Scholar 

  • Cingotti N, Jensen GK Health and environment Alliance (HEAL). Food contact materials and chemical contamination. Health and Environment Alliance, Brussels, Belgium

    Google Scholar 

  • Cole M, Lindeque P, Fileman E et al (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655

    CAS  Google Scholar 

  • Dris R, Gasperi J, Saad M et al (2016) Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull 104:290–293

    CAS  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    CAS  Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (CONTAM) (2016) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J 14. https://doi.org/10.2903/j.efsa.2016.4501

  • El-Rayis OA, Hassaan MA, Hemada EI (2014) Suitability of Lake Mariut drainage system (Qalaa and Umum drains waters) for water reuse. Blue Biotechnol J Hauppauge 3:265–277

    Google Scholar 

  • Eriksen M, Mason S, Wilson S et al (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:177–182

    CAS  Google Scholar 

  • Ferreira P, Fonte E, Soares ME et al (2016) Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: gold nanoparticles, microplastics and temperature. Aquat Toxicol 170:89–103

    CAS  Google Scholar 

  • Gaballah MS, Ismail K, Beltagy A, Zein Eldin AM, Ismail MM (2019) Wastewater treatment potential of water lettuce (Pistia stratiotes) with modified engineering design. J Water Chem Technol 41:197–205

    Google Scholar 

  • Gasperi J, Wright SL, Dris R et al (2018) Microplastics in air: are we breathing it in? Curr Opinion Environ Sci Health 1:1–5

    Google Scholar 

  • Gies EA, LeNoble JL, Noël M et al (2018) Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull 133:553–561

    CAS  Google Scholar 

  • Graham ER, Thompson JT (2009) Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Bio Ecol 368:22–29

    Google Scholar 

  • Hirai H, Takada H, Ogata Y et al (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692

    CAS  Google Scholar 

  • Global plastic production rises, recycling lags. In Worldwatch Institute. http://www.worldwatch.org/global- plastic-production-rises-recycling-lags-0. Mar 2018

  • https://www.iaea.org/newscenter/news/new-research-on-the-possible-effects-of-micro-and-nano-plastics-on-marine-animals. Accessed on 29 Nov 2022

  • https://www.wri.org/insights/4-ways-reduce-plastic-pollution. Accessed on 29 Nov 2022

  • Huerta Lwanga E, Mendoza Vega J, Ku Quej V et al (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7:14071

    PubMed Central  Google Scholar 

  • Kazour M, Terki S, Rabhi K et al (2019) Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill. Mar Pollut Bull 146:608–618

    CAS  Google Scholar 

  • Lebreton L, Slat B, Ferrari F et al (2018) Evidence that the great Pacific garbage patch is rapidly accumulating plastic. Sci Rep 8:4666

    CAS  PubMed Central  Google Scholar 

  • Lusher A, Hollman P, Mendoza-Hill J Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety https://oceanrep.geomar.de/id/eprint/49179/1/Microplastics%20in%20fisheries%20and%20aquaculture.pdf. Accessed 5 Dec 2022

  • Lutz N, Fogarty J, Rate A (2021) Accumulation and potential for transport of microplastics in stormwater drains into marine environments, Perth region, Western Australia. Mar Pollut Bull 168:112362

    CAS  Google Scholar 

  • Mahmood MA, Baruah S, Anal AK, Dutta J (2011) Heterogenous photocatalysis for removal of microbes from water. Environ Chem Lett 10:145–151

    Google Scholar 

  • Mak CW, Tsang YY, Leung MM-L et al (2020) Microplastics from effluents of sewage treatment works and stormwater discharging into the Victoria Harbor. Hong Kong Mar Pollut Bull 157:111181

    CAS  Google Scholar 

  • Materić D, Kjær HA, Vallelonga P et al (2022) Nanoplastics measurements in northern and southern polar ice. Environ Res 208:112741

    Google Scholar 

  • Mintenig SM, Int-Veen I, Löder MGJ et al (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372

    CAS  Google Scholar 

  • Mitrano DM et al (2019) Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat Nanotechnol 14:362–368

    CAS  PubMed Central  Google Scholar 

  • Moore C (2011) Plastic Ocean: how a sea Captain’s chance discovery launched a determined quest to save the oceans. Penguin

    Google Scholar 

  • Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62:1207–1217

    CAS  Google Scholar 

  • Naqash N, Prakash S, Kapoor D, Singh R (2020) Interaction of freshwater microplastics with biota and heavy metals: a review. Environ Chem Lett 18:1813–1824

    CAS  Google Scholar 

  • Nguyen B, Claveau-Mallet D, Hernandez LM et al (2019) Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc Chem Res 52:858–866. Water Sci. Technol., 72 (9) (2015), pp. 1495–1504,. https://doi.org/10.2166/wst.2015.360

    Article  CAS  Google Scholar 

  • Ortiz-Villanueva E, Jaumot J, Martínez R et al (2018) Assessment of endocrine disruptors effects on zebrafish (Danio rerio) embryos by untargeted LC-HRMS metabolomic analysis. Sci Total Environ 635:156–166

    CAS  Google Scholar 

  • Plastics Division: life cycle of a plastic product. In: archive.org. Accessed 30 Nov 2022

  • Plastic Market Size, Share & Trends Report, 2022–2030. (2015). grandviewresearch.com. Accessed 12 Jan 2022

  • Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126

    CAS  Google Scholar 

  • Rakib MRJ, ErtaÅŸ A, Walker TR et al (2022) Macro marine litter survey of sandy beaches along the Cox’s bazar coast of bay of Bengal, Bangladesh: land-based sources of solid litter pollution. Mar Pollut Bull 174:113246

    CAS  Google Scholar 

  • Rist S, Carney Almroth B, Hartmann NB, Karlsson TM (2018) A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ 626:720–726

    CAS  Google Scholar 

  • Schubert J (1972) A program to abolish harmful chemicals. Ambio 1:79–89

    CAS  Google Scholar 

  • Sharma VK, Ma X, Lichtfouse E et al (2022) Nanoplastics are potentially more dangerous than microplastics. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01539-1

  • Stock F, Kochleus C, Bänsch-Baltruschat B et al (2019) Sampling techniques and preparation methods for microplastic analyses in the aquatic environment – a review. Trends Analyt Chem 113:84–92

    CAS  Google Scholar 

  • Sussarellu R, Suquet M, Thomas Y et al (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 113:2430–2435

    CAS  PubMed Central  Google Scholar 

  • Ta AT, Babel S (2020) Microplastics pollution with heavy metals in the aquaculture zone of the Chao Phraya River estuary. Thailand Mar Pollut Bull 161:111747

    CAS  Google Scholar 

  • Talvitie J, Heinonen M, Pääkkönen J-P et al (2015) Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal gulf of Finland, Baltic Sea. Water Sci Technol 72:1495–1504

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H et al (2011) A review on heavy metals (as, Pb, and hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838

    CAS  Google Scholar 

  • Toussaint B, Raffael B, Angers-Loustau A et al (2019) Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36:639–673

    CAS  Google Scholar 

  • Tunali M, Uzoefuna EN, Tunali MM, Yenigun O (2020) Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci Total Environ 743:140479

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunandan Baruah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, A., Sarmah, D., Baruah, S. (2023). Nanoplastic Sources, Characterization, Ecological Impact, Remediation and Policies. In: Wang, C., Babel, S., Lichtfouse, E. (eds) Microplastic Occurrence, Fate, Impact, and Remediation. Environmental Chemistry for a Sustainable World, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-031-36351-1_10

Download citation

Publish with us

Policies and ethics