Skip to main content

Novel Membrane Technologies in the Treatment and Recovery of Wastewaters

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

Abstract

In residential areas with limited water supplies or unstable water sources, water reuse was first suggested more than 20 years ago. Pollution, increasing global urban population, and climate change have all had an impact on sustainable water supplies, increasing the demand for efficient wastewater reuse and recovery technology. Wastewater reuse and recovery can be applied with different membrane technologies. The most extensively used membrane applications in the treatment of wastewater and recovery from pretreatment to post-treatment stages are pressure-driven membrane processes. These approaches rely on hydraulic pressure to create separation. These procedures are divided into four categories. The four techniques are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). The fundamental differences between all these techniques, apart from the pressure prerequisites, are the pore sizes of the membranes. Considering the membrane studies in the literature, such pressure-driven membrane technologies have long been implied with a variety of scenarios for wastewater recovery. Besides the pressure-driven membranes, innovative hybrid water recovery solutions rely on concentration, electrical potential, thermal difference, and vacuum-driven membrane processes. The advanced membrane processes that can be explored are pervaporation (PV), forward osmosis (FO), membrane distillation (MD), electrodialysis (EDI), membrane bioreactors (MBR), and a combination of these technologies to be used in zero-liquid discharge systems for wastewater recovery and reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezugbe, E. O., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(5).

    Google Scholar 

  2. Quist-Jensen, C. A., Macedonio, F., & Drioli, E. (2015). Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination, 364, 17–32.

    Article  CAS  Google Scholar 

  3. Jainesh, H., Jhaveri, Z. V. P., & Murthy, A. (2016). Comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137–154.

    Article  Google Scholar 

  4. Hankins, N. P., Singh, R., Buchheim, J., Wyss, R. M., Kim, C.-M., Deng, M., & Park, H. G. (2016). Emerging Membrane Technology for Sustainable Water Treatment.

    Google Scholar 

  5. Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147.

    Article  Google Scholar 

  6. Ibrar, I., Altaee, A., Zhou, J. L., Naji, O., & Khanafer, D. (2020). Challenges and potentials of forward osmosis process in the treatment of wastewater. Critical Reviews in Environmental Science and Technology, 50(13), 1339–1383.

    Article  Google Scholar 

  7. Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C., & Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water Research, 58, 179–197.

    Article  CAS  Google Scholar 

  8. Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 64–74.

    Article  Google Scholar 

  9. Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1–2), 34–39.

    Article  CAS  Google Scholar 

  10. Nguyen, N. C., Chen, S.-S., Jain, S., Nguyen, H. T., Ray, S. S., Ngo, H. H., Guo, W., Lam, N. T., & Duong, H. C. (2018). Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process. Environ Science and Pollution Research, 25(6), 5203–5211.

    Article  CAS  Google Scholar 

  11. Chung, T.-S., Zhang, S., Wang, K. Y., Su, J., & Ling, M. M. (2012). Forward osmosis processes: Yesterday, today and tomorrow. Desalination, 287, 78–81.

    Article  CAS  Google Scholar 

  12. Mondal, S., Field, R. W., & Wu, J. J. (2017). Novel approach for sizing forward osmosis membrane systems. Journal of Membrane Science, 541, 321–328.

    Article  CAS  Google Scholar 

  13. Wang, J., Dlamini, D. S., Mishra, A. K., Pendergast, M. T. M., Wong, M. C. Y., Mamba, B. B., Freger, V., Verliefde, A. R. D., & Hoek, E. M. V. (2014). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454, 516–537.

    Article  CAS  Google Scholar 

  14. Lee, K. L., Baker, R. W., & Lonsdale, H. K. (1981). Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science, 8, 141–171.

    Article  CAS  Google Scholar 

  15. McCutcheon, J. R., & Elimelech, M. (2006). Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science, 284(1–2), 237–247.

    Article  CAS  Google Scholar 

  16. Bui, N.-N., Arena, J. T., & McCutcheon, J. R. (2015). Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter. Journal of Membrane Science, 492, 289–302.

    Article  CAS  Google Scholar 

  17. Tan, C. H., & Ng, H. Y. (2008). Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. Journal of Membrane Science, 324(1–2), 209–219.

    Article  CAS  Google Scholar 

  18. Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., Hoover, L. A., Kim, Y. C., & Elimelech, M. (2011). Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environmental Science & Technology, 45(10), 4360–4369.

    Article  CAS  Google Scholar 

  19. Gruber, M. F., Johnson, C. J., Tang, C. Y., Jensen, M. H., Yde, L., & Hélix-Nielsen, C. (2011). Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. Journal of Membrane Science, 379(1–2), 488–495.

    Article  CAS  Google Scholar 

  20. Nagy, E. A. (2014). General, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation. Journal of Membrane Science, 460, 71–81.

    Article  CAS  Google Scholar 

  21. Altaee, A., Zhou, J., Alhathal Alanezi, A., & Zaragoza, G. (2017). Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters. Applied Energy, 206, 303–311. https://doi.org/10.1016/j.apenergy.2017.08.195

    Article  Google Scholar 

  22. Phuntsho, S., Shon, H. K., Hong, S., Lee, S., & Vigneswaran, S. (2011). A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 375(1–2), 172–181.

    Article  CAS  Google Scholar 

  23. Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., & Hilal, N. (2018). Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination, 434, 100–120.

    Article  CAS  Google Scholar 

  24. Lv, L., Xu, J., Shan, B., & Gao, C. (2017). Concentration performance and cleaning strategy for controlling membrane fouling during forward osmosis concentration of actual oily wastewater. Journal of Membrane Science, 523, 15–23.

    Article  CAS  Google Scholar 

  25. Thorsen, T. (2004). Concentration polarisation by natural organic matter (NOM) in NF and UF. Journal of Membrane Science, 233(1–2), 79–91.

    Article  CAS  Google Scholar 

  26. Chou, S. (2010). Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination, 261(3), 365–372.

    Article  CAS  Google Scholar 

  27. Ren, J., & McCutcheon, J. R. A. (2014). New commercial thin film composite membrane for forward osmosis. Desalination, 343, 187–193.

    Article  CAS  Google Scholar 

  28. Alsvik, I. L., & Hägg, M.-B. (2013). Pressure retarded osmosis and forward osmosis membranes: Materials and methods. Polymers, 5, 303–327.

    Article  Google Scholar 

  29. Singh, R. (2006). Hybrid membrane systems for water purification: Technology, systems design and operation. Elsevier.

    Google Scholar 

  30. Fam, W., Phuntsho, S., Lee, J. H., & Shon, H. K. (2013). Performance comparison of thin-film composite forward osmosis membranes. Desalination and Water Treatment, 51(31–33), 6274–6280.

    Article  CAS  Google Scholar 

  31. Lu, P., Liang, S., Zhou, T., Xue, T., Mei, X., & Wang, Q. (2017). Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance. Desalination, 421, 99–109.

    Article  CAS  Google Scholar 

  32. Xie, M., & Gray, S. R. (2016). Gypsum scaling in forward osmosis: Role of membrane surface chemistry. Journal of Membrane Science, 513, 250–259.

    Article  CAS  Google Scholar 

  33. Chun, Y., Mulcahy, D., Zou, L., & Kim, I. (2017). A short review of membrane fouling in forward osmosis processes. Membranes, 7(2), 30.

    Article  Google Scholar 

  34. Kwan, S. E., Bar-Zeev, E., & Elimelech, M. (2015). Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms. Journal of Membrane Science, 493, 703–708.

    Article  CAS  Google Scholar 

  35. Li, F., Cheng, Q., Tian, Q., Yang, B., & Chen, Q. (2016). Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor. Bioresource Technology, 211, 751–758.

    Article  CAS  Google Scholar 

  36. Mi, B., & Elimelech, M. (2010). Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 348(1–2), 337–345.

    Article  CAS  Google Scholar 

  37. She, Q., Wang, R., Fane, A. G., & Tang, C. Y. (2016). Membrane fouling in osmotically driven membrane processes: A review. Journal of Membrane Science, 499, 201–233.

    Article  CAS  Google Scholar 

  38. Yoon, H., Baek, Y., Yu, J., & Yoon, J. (2013). Biofouling occurrence process and its control in the forward osmosis. Desalination, 325, 30–36.

    Article  CAS  Google Scholar 

  39. Zhang, S., & Drioli, E. (1995). Pervaporation membranes. Separation Science & Technology, 30, 1–31.

    Article  Google Scholar 

  40. Quiñones-Bolaños, E., Zhou, H., & Parkin, G. (2005). Membrane pervaporation for wastewater reuse in microirrigation. Journal of Environmental Engineering, 131(12), 1633–1643.

    Article  Google Scholar 

  41. Wijmans, J. G., Kaschemekat, J., Davidson, J. E., & Baker, R. W. (1990). Treatment of organic-contaminated wastewater streams by pervaporation. Environmental Progress, 9(4), 262–268.

    Article  CAS  Google Scholar 

  42. Kondo, M., & Sato, H. (1994). Treatment of wastewater from phenolic resin process by pervaporation. Desalination, 98(1–3), 147–154.

    Article  CAS  Google Scholar 

  43. Simone, S., Figoli, A., Santoro, S., Galiano, F., Alfadul, S. M., Al-Harbi, O. A., & Drioli, E. (2012). Preparation and characterization of ECTFE solvent resistant membranes and their application in pervaporation of toluene/water mixtures. Separation and Purification Technology, 90, 147–161.

    Article  CAS  Google Scholar 

  44. Wu, X. M., Zhang, Q. G., Soyekwo, F., Liu, Q. L., & Zhu, A. M. (2016). Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane. AIChE Journal, 62(3), 842–851.

    Article  CAS  Google Scholar 

  45. Kujawa, J., Cerneaux, S., & Kujawski, W. (2015). Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. Journal of Membrane Science, 474, 11–19.

    Article  CAS  Google Scholar 

  46. Singha, N. R., & Ray, S. K. (2012). Removal of pyridine from water by pervaporation using crosslinked and filled natural rubber membranes. Journal of Applied Polymer Science, 124(S1), 99–107.

    Article  Google Scholar 

  47. Zhang, C., Yang, L., Bai, Y., Gu, J., & Sun, Y. (2012). ZSM-5 filled polyurethaneurea membranes for pervaporation separation isopropyl acetate from aqueous solution. Separation and Purification Technology, 85, 8–16.

    Article  CAS  Google Scholar 

  48. Das, S., Banthia, A. K., & Adhikari, B. (2008). Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water. Chemical Engineering Journal, 138(1–3), 215–223.

    Article  CAS  Google Scholar 

  49. Crespo, J. G., & Brazinha, C. (2015). Fundamentals of pervaporation. In Pervaporation, vapour permeation and membrane distillation: principles and applications (pp. 3–17). Elsevier Ltd.

    Google Scholar 

  50. Liu, G., Hou, D., Wei, W., Xiangli, F., & Jin, W. (2011). Pervaporation separation of butanol-water mixtures using polydimethylsiloxane/ceramic composite membrane. Chinese Journal of Chemical Engineering, 19(1), 40–44.

    Article  Google Scholar 

  51. Van der Bruggen, B., & Luis, P. (2014). Pervaporation as a tool in chemical engineering: A new era? Current Opinion in Chemical Engineering, 4, 47–53.

    Article  Google Scholar 

  52. Winston Ho, W. S., & Sirkar, K. K. (1992). Membrane handbook. Van Nostrand Reinhold.

    Google Scholar 

  53. Mulder, M., & Marcel, M. (1997). Basic principles of membrane technology (2nd ed).

    Google Scholar 

  54. Panagopoulos, A., Haralambous, K. J., & Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies—A review. Science of the Total Environment, 693, 133545.

    Article  CAS  Google Scholar 

  55. Sata, T. (2004). Ion exchange membranes: Preparation, characterization. Royal Society of Chemistry.

    Google Scholar 

  56. Rommerskirchen, A., Roth, H., Linnartz, C. J., Egidi, F., Kneppeck, C., Roghmans, F., & Wessling, M. (2021). Mitigating water crossover by crosslinked coating of cation-exchange membranes for brine concentration. Advanced Material Technology, 6(10), 2100202.

    Article  CAS  Google Scholar 

  57. Water Works Association, A. (1999). Electrodialysis and electrodialysis reversal AWWA manual, M38 (1st ed).

    Google Scholar 

  58. Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, 10(146), 1–93.

    Google Scholar 

  59. Spiegler, K. S., & Laird, A. D. K. (1980). Principles of Desalination. Part A.

    Google Scholar 

  60. Biesheuvel, P. M., Porada, S., Elimelech, M., & Dykstra, J. E. (2022). Tutorial review of reverse osmosis and electrodialysis. Journal of Membrane Science, 647.

    Google Scholar 

  61. Fidaleo, M., & Moresi, M. (2006). Electrodialysis applications in the food industry. In Advances in food and nutrition research (Vol. 51, pp. 265–360). Elsevier.

    Google Scholar 

  62. Landsman, M. R., Lawler, D. F., & Katz, L. E. (2020). Application of Electrodialysis Pretreatment to Enhance Boron Removal and Reduce Fouling during Desalination by Nanofiltration/Reverse Osmosis. Desalination, 491, 114563.

    Article  CAS  Google Scholar 

  63. Wang, X., Zhou, X., Ma, S., Wang, Z., Wang, E., & Li, Z. (2022). White carbon black wastewater treatment by electrodialysis: Salt separation, silicon sol transporting and wastewater recycling. Journal of Environmental Chemical Engineering, 10(3), 107856.

    Article  CAS  Google Scholar 

  64. Hussain, A., Yan, H., Ul Afsar, N., Wang, H., Yan, J., Jiang, C., Wang, Y., & Xu, T. (2022). Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration. Separation and Purification Technology, 295, 121318.

    Article  CAS  Google Scholar 

  65. Lin, J., Chen, Q., Huang, X., Yan, Z., Lin, X., Ye, W., Arcadio, S., Luis, P., Bi, J., Van der Bruggen, B., & Zhao, S. (2021). Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater. Journal of Hazardous Materials, 419, 126505.

    Article  CAS  Google Scholar 

  66. Schwantes, R., Seger, J., Bauer, L., Winter, D., Hogen, T., Koschikowski, J., & Geißen, S. U. (2019). Characterization and assessment of a novel plate and frame MD module for single pass wastewater concentration–FEED gap air gap membrane distillation. Membranes, 9(9), 118.

    Article  CAS  Google Scholar 

  67. Zare, S., & Kargari, A. (2018). Membrane properties in membrane distillation. In Emerging technologies for sustainable desalination handbook (pp. 107–156).

    Google Scholar 

  68. Kim, J. (2019). Sustainable membrane bioreactor wastewater treatment. In P. Maurice (Ed.), Encyclopedia of water (pp. 1–8). Wiley.

    Google Scholar 

  69. Santos, A., Ma, W., & Judd, S. J. (2011). Membrane bioreactors: Two decades of research and implementation. Desalination, 273(1), 148–154.

    Article  CAS  Google Scholar 

  70. Alturki, A. A., Tadkaew, N., McDonald, J. A., Khan, S. J., Price, W. E., & Nghiem, L. D. (2010). Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science, 365(1–2), 206–215.

    Article  CAS  Google Scholar 

  71. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., Van der Graaf, J., & Wintgens, T. (2006). Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187, 271–282.

    Article  CAS  Google Scholar 

  72. Al-Asheh, S., Bagheri, M., & Aidan, A. (2021). Membrane bioreactor for wastewater treatment: A review. Case Studies in Chemical and Environmental Engineering, 4, 100109.

    Article  CAS  Google Scholar 

  73. Judd, S. (2008). The status of membrane bioreactor technology. Trends in Biotechnology, 26(2), 109–116.

    Article  CAS  Google Scholar 

  74. Bartels, C. R., Wilf, M., Andes, K., & Iong, J. (2005). Design considerations for wastewater treatment by reverse osmosis. Water Science and Technology, 51, 473–482.

    Article  CAS  Google Scholar 

  75. Bergman, R. A., Joffe, D., Adams, N., & Porter, R. (2003, March 2–5). Gwinnett county water reclamation with 50 MGD ultrafiltration–proof testing and design. In Proceedings of the AWWA Membrane Technology Conference. Atlanta, GA, USA.

    Google Scholar 

  76. Hai, F. I., Yamamoto, K., & Lee, C.-H. (2013). Membrane biological reactors. IWA Publishing.

    Google Scholar 

  77. Côté, P., Buisson, H., & Praderie, M. (1998). Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Science and Technology, 38, 437–442.

    Google Scholar 

  78. Huang, J. (2001). Pervaporative recovery of N-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. Journal of Membrane Science, 192(1–2), 231–242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Koyuncu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasaoglu, M.E., Kaya, R., Koyuncu, I. (2023). Novel Membrane Technologies in the Treatment and Recovery of Wastewaters. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_7

Download citation

Publish with us

Policies and ethics