Skip to main content

Electrode Materials and Their Effects on Electricity Generation and Wastewater Treatment in a Microbial Fuel Cell

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

  • 170 Accesses

Abstract

Wastewater is an unwelcome by-product of industrial processes that has no economic value. Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) are two parameters affecting the water quality. Microbial fuel cell (MFC) is bio-electrochemical systems that enable direct energy harvesting from the wastewater via microbial activity while also oxidizing organic matter in the wastewater. MFC-based wastewater treatment can reduce environmental pollution parameters such as BOD and COD. MFC uses microorganisms’ catalytic activity to convert chemical energy to electricity. Bacteria will degrade the organic matter in the waste, and their catalytic activity will be able to reduce the contaminants from wastewater. This technology is very efficient at lowering BOD and COD levels. With the power generated about 4465 mW/m2, the COD and BOD levels of tempeh waste lowered by up to 88.9% and 34.0%, respectively (Sejati 2020). As an environmental technology that can reduce COD and BOD levels in wastewater and generate electrical energy, the amount of electricity generated in this system is very small. The amount of waste degradation and electrical energy produced is influenced using electrodes. Modifying the electrode structure with polymers such as polyaniline can boost electrical energy generation by up to 63.6% (Yin 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mansour, S., Knani, S., Bensouilah, R., & Ksibi, Z. (2020). Wastewater problems and treatments. In Current trends and future developments on (bio-) membranes (pp. 151–174).

    Google Scholar 

  2. Iacob, V. S. (2013). The wastewater—A problem of integrated urban waste management. Procedia Economics and Finance, 6, 436–443.

    Article  Google Scholar 

  3. Devi, R., & Dahiya, R. P. (2008). COD and BOD removal from domestic wastewater generated in decentralised sectors. Bioresource Technology, 99, 344–349.

    Article  CAS  Google Scholar 

  4. Rocha, L. C. S., Junior, P. R., Aquila, G., & Janda, K. (2022). Utility-scale energy storage systems: World condition and brazilian perspectives. Journal of Energy Storage, 52, 105066.

    Article  Google Scholar 

  5. Iftimie, S., & Dumitru, A. (2019). Enhancing the performance of microbial fuel cells (MFCs) with nitrophenyl modified carbon nanotubes-based anode. Applied Surface Science, 492, 661–668.

    Article  CAS  Google Scholar 

  6. Khan, S., & Ali, J. (2018). Chemical analysis of air and water. In Bioassays (pp. 21–39).

    Google Scholar 

  7. Hu, Z., & Grasso, D. (2005). Water analysis, chemical oxygen demand. In Encyclopedia of analytical science (pp. 325–330).

    Google Scholar 

  8. Wang, S., Tian, S., Zhang, P., Ye, J., Tao, X., Li, F., Zhou, Z., & Nabi, M. (2019). Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. Journal of Environmental Management, 252, 109682.

    Article  CAS  Google Scholar 

  9. Mahmood, M. B. (2015). Environmental applications of instrumental chemical analysis. CRC Press Taylor & Francis Group.

    Google Scholar 

  10. Wang, X., Feng, Y. J., & Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. A Journal of the International Association on Water Pollution Research, 57, 1117–1121.

    Article  CAS  Google Scholar 

  11. Sudarlin, Afrianto, A. W., Khoerunnisa, M., Rahmadhani, D. W., & Nugroho, A. (2020). Utilization of montmorillonite-modified earthenware from bentonite-Ca as a microbial fuel cell (MFC) membrane based on tempe liquid waste as a substrate. Journal of Scientific and Applied Chemistry, 6, 222–227.

    Google Scholar 

  12. Faria, A., Goncalves, L., Peixoto, J. M., Peixoto, L., Brito, A. G., & Martins, G. (2016). Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell. Journal of Cleaner Production, 1–6.

    Google Scholar 

  13. Choudhury, P., Uday, U. S. P., Mahata, N., Tiwari, O. N., Ray, R. N., Bandyopadhyay, T. K., & Bhunia, B. (2017). Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives. Renewable and Sustainable Energy Reviews, 79, 372–389.

    Article  Google Scholar 

  14. Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533–1543.

    Article  CAS  Google Scholar 

  15. Mathew, S., & Thomas, P. C. (2020). Fabrication of polyaniline nanocomposites as electrode material for power generation in microbial fuel cells. Materials Today: Proceedings, 33(2), 1415–1419.

    CAS  Google Scholar 

  16. Liao, Z., Chen, Z., Xu, A., Gao, Q., Song, K., Liu, J., & Hu, H. Y. (2021). Wastewater treatment and reuse situations and influentials factors in major Asian countries. Journal of Environmental Management, 282, 111976.

    Article  Google Scholar 

  17. Mehta, R., Brahmbhatt, H., Saha, N. K., & Bhattacharya, A. (2015). Removal of substituted phenyl urea pesticides by reverse osmosis membranes: Laboratory scale study for field water application. Desalination, 358, 69–75.

    Article  CAS  Google Scholar 

  18. Mook, W. T., Aroua, M. K. T., Chakrabarti, M. H., Noor, I. M., Irfan, M. F., & Low, C. T. J. (2013). A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems. Journal of Industrial and Engineering Chemistry, 19(1), 1–13.

    Article  CAS  Google Scholar 

  19. Kumar, R., Singh, L., & Zularisam, A. W. (2016). Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322–1336.

    Article  CAS  Google Scholar 

  20. Sun, H., Xu, S., Zhuang, G., & Zhuang, X. (2016). Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review. Journal of Environmental Sciences (China), 39, 242–248.

    Article  CAS  Google Scholar 

  21. Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. Frontiers in Microbiology, 8, 1–14.

    Article  Google Scholar 

  22. Ghadge, A. N., & Ghangrekar, M. M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochimica Acta, 166, 320–328.

    Article  CAS  Google Scholar 

  23. Virdis, B., Read, S. T., Rabaey, K., Rozendal, R. A., Yuan, Z., & Keller, J. (2011). Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technology, 102(1), 334–341.

    Article  CAS  Google Scholar 

  24. Elakkiya, E., & Matheswaran, M. (2013). Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresource Technology, 136, 407–412.

    Article  CAS  Google Scholar 

  25. Tamakloe, R. Y., Opoku-Donkor, T., Donkor, M. K. E., & Agamasu, H. (2015). Comparative study of double-chamber microbial fuel cells (DC-MFCs) using Mfensi clay as ion-exchange-partition: Effect of electrodes. African Journal of Science, Technology, Innovation and Development, 7(3), 207–210.

    Article  Google Scholar 

  26. Sejati, E. S., & Sudarlin. (2020). The effect of multiple electrode pairs to electricity potential of ceramic-based and tempe waste microbial fuel cell. Journal of Physics: Conference Series, 1788, 012010.

    Google Scholar 

  27. Pant, D., Van Bogaert, G., Porto-Carrero, C., Diels, L., & Vanbroekhoven, K. (2011). Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Science and Technology, 63(10), 2457–2461.

    Article  CAS  Google Scholar 

  28. Srikanth, S., Pavani, T., Sarma, P. N., & Venkata Mohan, S. (2011). Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. International Journal of Hydrogen Energy, 36, 2271–2280.

    Article  CAS  Google Scholar 

  29. Rabaey, K., Clauwaert, P., Aelterman, P., & Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology, 39, 8077–8082.

    Article  CAS  Google Scholar 

  30. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  31. Bajracharya, S., ElMekawy, A., Srikanth, S., & Pant, D. (2016). Cathodes for microbial fuel cells. In Microbial electrochemical and fuel cells (pp. 179–213).

    Google Scholar 

  32. Karmakar, S., Kundu, K., & Kundu, S. (2010). Design adn development of microbial fuel cells. In Current research, technology and education topics in applied microbiology and microbial technology (pp. 1029–1034).

    Google Scholar 

  33. Winfield, J., Gajda, I., Greenman, J., & Ioannis, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296–303.

    Article  CAS  Google Scholar 

  34. Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology, 40, 3388–3394.

    Article  CAS  Google Scholar 

  35. Vilajeliu-Pons, A., Puig, S., Salcedo-Dávila, I., Balaguer, M. D., & Colprim, J. (2017). Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials. Environmental Science: Water Research & Technology, 3(5), 947–959.

    CAS  Google Scholar 

  36. Yousefi, V., Mohebbi-Kalhori, D., & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42(3), 1672–1690.

    Article  CAS  Google Scholar 

  37. Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Solar energy powered microbial fuel cell with a reversible bioelectrode. Environmental Science & Technology, 44, 532–537.

    Article  CAS  Google Scholar 

  38. You, S., Zhao, Q., Zhang, J., Jiang, J., & Zhao, S. (2006). A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources, 162(2), 1409–1415.

    Article  CAS  Google Scholar 

  39. Dumitru, A., & Scott, K. (2016). Anode materials for microbial fuel cells. In Microbial electrochemical and fuel cells (pp. 117–152).

    Google Scholar 

  40. Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41(9), 3341–3346.

    Article  CAS  Google Scholar 

  41. Dewan, A., Beyenal, H., & Lewandowski, Z. (2008). Scaling up microbial fuel cells. Environmental Science & Technology, 42(20), 7643–7648.

    Article  CAS  Google Scholar 

  42. Aelterman, P., Versichele, M., Marzorati, M., Boon, N., & Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99(18), 8895–8902.

    Article  CAS  Google Scholar 

  43. Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L., & Bergel, A. (2007). Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta, 53(2), 468–473.

    Article  CAS  Google Scholar 

  44. Kargi, F., & Eker, S. (2007). Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. Journal of Chemical Technology & Biotechnology, 82(7), 658–662.

    Article  CAS  Google Scholar 

  45. Qian, F., Baum, M., Gu, Q., & Morse, D. E. (2009). A 1.5 µL microbial fuel cell for on-chip bioelectricity generation. Lab on a Chip, 9(21), 3076.

    Google Scholar 

  46. Rhoads, A., Beyenal, H., & Lewandowski, Z. (2005). Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science & Technology, 39(12), 4666–4671.

    Article  CAS  Google Scholar 

  47. Park, D. H., & Zeikus, J. G. (2002). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering, 81(3), 348–355.

    Article  Google Scholar 

  48. Yazdi, A. A., D’Angelo, L., Omer, N., Windiasti, G., Lu, X., & Xu, J. (2016). Carbon nanotube modification of microbial fuel cell electrodes. Biosensors and Bioelectronics, 85, 536–552.

    Article  CAS  Google Scholar 

  49. Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26(6), 3000–3004.

    Article  CAS  Google Scholar 

  50. Peng, L., You, S. J., & Wang, J. Y. (2010). Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosensors and Bioelectronics, 25(5), 1248–1251.

    Article  CAS  Google Scholar 

  51. Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., & Yu, C. (2011). A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 196(13), 5402–5407.

    Article  CAS  Google Scholar 

  52. Huang, Y. X., Liu, X. W., Xie, J. F., Sheng, G. P., Wang, G. Y., Zhang, Y. Y., & Yu, H. Q. (2011). Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications, 47(20), 5795.

    Article  CAS  Google Scholar 

  53. Xiao, L., Damien, J., Luo, J., Jang, H. D., Huang, J., & He, Z. (2012). Crumpled graphene particles for microbial fuel cell electrodes. Journal of Power Sources, 208, 187–192.

    Article  CAS  Google Scholar 

  54. Thepsuparungsikul, N., Ng, T. C., Lefebvre, O., & Ng, H. Y. (2014). Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Science and Technology, 69(9), 1900–1910.

    Article  CAS  Google Scholar 

  55. Li, C., Zhang, L., Ding, L., Ren, H., & Cui, H. (2011). Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosensors and Bioelectronics, 26(10), 4169–4176.

    Article  CAS  Google Scholar 

  56. Zou, Y., Pisciotta, J., & Baskakov, I. V. (2010). Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochemistry, 79(1), 50–56.

    Article  CAS  Google Scholar 

  57. Wang, P., Li, H., & Du, Z. (2014). Polyaniline synthesis by cyclic voltammetry for anodic modification in microbial fuel cells. International Journal of Electrocemical Science, 9, 2038–2046.

    Google Scholar 

  58. Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353.

    Article  CAS  Google Scholar 

  59. Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., & Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159–167.

    Article  CAS  Google Scholar 

  60. Adams, C., Asce, M., Wang, Y., Loftin, K., & Mayer, M. (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 128(3), 253–260.

    Article  CAS  Google Scholar 

  61. Cai, Q., & Hu, J. (2017). Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity. Journal of Hazardous Materials, 323, 527–536.

    Article  CAS  Google Scholar 

  62. Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1–3), 46–52.

    Article  CAS  Google Scholar 

  63. Yin, T., Zhang, H., Yang, G., & Wang, L. (2019). Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synthetic Metals, 252, 8–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Babel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afrianto, A.W., Babel, S. (2023). Electrode Materials and Their Effects on Electricity Generation and Wastewater Treatment in a Microbial Fuel Cell. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_5

Download citation

Publish with us

Policies and ethics