Skip to main content

Leveraging Deep Learning for MmWave Channel Impulse Response Prediction

  • Conference paper
  • First Online:
Advances on Intelligent Computing and Data Science (ICACIn 2022)

Abstract

In communication systems research, wireless channel estimation is a challenging problem due to the dual requirements of real-time implementation and high estimation accuracy. This work presents a Long-Short Term Memory (LSTM) based deep learning (DL) model for the prediction of mmWave channel response for real-time and real-world non-stationary channel scenarios. The DL model trains on the predefined history of channel impulse response (CIR) data along with two other features viz. root-mean-square delay spread values and transmitter-receiver update distance, which are also varying in time with the CIR. The objective is to generate an estimate of CIRs using prediction through the DL model. For training the model, a sample dataset is generated through the open-source channel simulation software NYUSIM which produces samples of CIRs using measurement-based channel models based on various multipath channel parameters. From the DL model test results, it is observed that the proposed approach provides a viable lightweight solution for root-mean-square delay spread values channel prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NYUSIM Version 3.1 available at: https://wireless.engineering.nyu.edu/nyusim/

References

  1. Alrabeiah, M., Alkhateeb, A.: Deep learning for TDD and FDD massive MIMO: Mapping channels in space and frequency. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1465–1470 (2019)

    Google Scholar 

  2. Ansari, M.S., Bartos, V., Lee, B.: GRU-based deep learning approach for network intrusion alert prediction. Fut. Gener. Comput. Syst. 128, 235–247 (2022)

    Article  Google Scholar 

  3. Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R.K., Kumar, P.: Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 25(3), 1315–1360 (2021)

    Article  Google Scholar 

  4. Hassan, K., Masarra, M., Zwingelstein, M., Dayoub, I.: Channel estimation techniques for millimeter-wave communication systems: achievements and challenges. IEEE Open J. Commun. Soc. 1, 1336–1363 (2020). https://doi.org/10.1109/OJCOMS.2020.3015394

    Article  Google Scholar 

  5. Heath, R.W., González-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Sig. Process. 10(3), 436–453 (2016). https://doi.org/10.1109/JSTSP.2016.2523924

  6. Jiang, Y.: Application and comparison of multiple machine learning models in finance. Sci. Program. 2022 (2022)

    Google Scholar 

  7. Ju, S., Kanhere, O., Xing, Y., Rappaport, T.S.: A millimeter-wave channel simulator NYUSIM with spatial consistency and human blockage. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019)

    Google Scholar 

  8. Li, X., Alkhateeb, A.: Deep learning for direct hybrid precoding in millimeter wave massive MIMO systems. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 800–805 (2019)

    Google Scholar 

  9. Mattu, S.R., Chockalingam, A.: Learning-based channel estimation and phase noise compensation in doubly-selective channels. IEEE Commun. Lett. 26(5), 1052–1056 (2022)

    Article  Google Scholar 

  10. Moon, S., Kim, H., Hwang, I.: Deep learning-based channel estimation and tracking for millimeter-wave vehicular communications. J. Commun. Netw. 22(3), 177–184 (2020). https://doi.org/10.1109/JCN.2020.000012

    Article  Google Scholar 

  11. Naeem, M., De Pietro, G., Coronato, A.: Application of reinforcement learning and deep learning in multiple-input and multiple-output (MIMO) systems. Sensors 22(1) (2022). https://doi.org/10.3390/s22010309

  12. Ozpoyraz, B., Dogukan, A.T., Gevez, Y., Altun, U., Basar, E.: Deep learning-aided 6G wireless networks: a comprehensive survey of revolutionary PHY architectures. arXiv preprint arXiv:2201.03866 (2022)

  13. O’Shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3(4), 563–575 (2017)

    Article  Google Scholar 

  14. Rangasamy, K., As’ari, M.A., Rahmad, N.A., Ghazali, N.F., Ismail, S.: Deep learning in sport video analysis: a review. Telkomnika 18(4), 1926–1933 (2020)

    Google Scholar 

  15. Rappaport, T.S., MacCartney, G.R., Samimi, M.K., Sun, S.: Wideband millimeter wave propagation measurements and channel models for future wireless communication system design. IEEE Trans. Commun. 63(9), 3029–3056 (2015). https://doi.org/10.1109/TCOMM.2015.2434384

    Article  Google Scholar 

  16. Rappaport, T.S., Xing, Y., MacCartney, G.R., Molisch, A.F., Mellios, E., Zhang, J.: Overview of millimeter wave communications for fifth generation (5G) wireless networks—with a focus on propagation models. IEEE Trans. Antennas Propag. 65(12), 6213–6230 (2017). https://doi.org/10.1109/TAP.2017.2734243

    Article  Google Scholar 

  17. Rappaport, T., Seidel, S., Takamizawa, K.: Statistical channel impulse response models for factory and open plan building radio communicate system design. IEEE Trans. Commun. 39(5), 794–807 (1991)

    Article  Google Scholar 

  18. Shehzad, M.K., Rose, L., Wesemann, S., Assaad, M.: Ml-based massive mimo channel prediction: does it work on real-world data? IEEE Wirel. Commun. Lett. 11(4), 811–815 (2022)

    Article  Google Scholar 

  19. Sun, S., Ju, S., Rappaport, T.S.: NYUSIM user manual version 1.6.1. New York University and NYU WIRELESS (2018)

    Google Scholar 

  20. Sun, S., MacCartney, G.R., Rappaport, T.S.: A novel millimeter-wave channel simulator and applications for 5G wireless communications. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2017)

    Google Scholar 

  21. Wang, D., Cao, W., Zhang, F., Li, Z., Xu, S., Wu, X.: A review of deep learning in multiscale agricultural sensing. Remote Sens. 14(3), 559 (2022)

    Article  Google Scholar 

  22. Wang, Z., Pu, F., Yang, X., Chen, N., Shuai, Y., Yang, R.: Online LSTM-based channel estimation for HF MIMO SC-FDE system. IEEE Access 8, 131005–131020 (2020)

    Article  Google Scholar 

  23. Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. Digit. Sig. Process., 103514 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Samar Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharique, M., Ansari, M.S., Gangal, C. (2023). Leveraging Deep Learning for MmWave Channel Impulse Response Prediction. In: Saeed, F., Mohammed, F., Mohammed, E., Al-Hadhrami, T., Al-Sarem, M. (eds) Advances on Intelligent Computing and Data Science. ICACIn 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-031-36258-3_28

Download citation

Publish with us

Policies and ethics