Skip to main content

Energy Harvesting Systems for Agricultural Needs

  • Chapter
  • First Online:
Energy Harvesting Trends for Low Power Compact Electronic Devices

Abstract

Nowadays smart farming is shifting toward electrical energy use in agricultural application. Solar voltaic technology is common on the farmland to supply primary energy to farm as well as to the wireless sensor networks. Biomass energy harvesting includes biomass gasification, biogas-based power generation, thermoelectric generation, small hydro, solar heat pump, fuel cells, etc.

Automation, Internet of things (IoT), and remote sensing are integrated part of the machineries used in smart agriculture. Many sensors and computer-based devices used in precision farming and smart farming are based on embedded energy harvesting systems based on the basic methods like piezoelectric energy harvester, thermoelectric generators, radio frequency harvester, pyroelectric generator, etc. Different energy sources like deviation in the soft kind of materials, vibrations, RF energy, solar energy, body heat, body motion, etc. can produce energy density in the range of 3.61–800 mW/cm3. This chapter is focused on the overview of types of energy harvesting systems and integrated technologies for various agricultural monitoring and postharvest operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikary S, Biswas B, Naskar MK, Mukherjee B, Singh AP, Atta K (2022) Remote sensing for agricultural applications. In: Eyvaz APM, Albahnasawi A, Gürbulak E, Tekbaş M (eds) Arid environment – perspectives, challenges and management. IntechOpen. https://doi.org/10.5772/intechopen.106876

    Chapter  Google Scholar 

  2. Khaled O, Bashria AA, Maryam Nooman AlMallahi Y, Tan YC, Mahmoud M, Jaber H, Ramadan M (2022) An overview of smart irrigation systems using IoT. Energy Nexus 7:100124. ISSN 2772-4271. https://doi.org/10.1016/j.nexus.2022.100124

    Article  Google Scholar 

  3. Wang T, Xu X, Wang C, Li Z, Li D (2021) From smart farming towards unmanned farms: a new mode of agricultural production. Agriculture 11(2):145. https://doi.org/10.3390/agriculture11020145

    Article  Google Scholar 

  4. Covaci and Gontean (2020) Piezoelectric energy harvesting solutions: a review. Sensors 20:3512. https://doi.org/10.3390/s20123512

    Article  Google Scholar 

  5. Saif H, Khan MB, Lee J, Lee K, Lee Y (2019) A high-voltage energy-harvesting interface for irregular kinetic energy harvesting in IoT systems with 1365% improvement using all-NMOS power switches and ultra-low quiescent current controller. Sensors 19(17):3685. https://doi.org/10.3390/s19173685

    Article  Google Scholar 

  6. Shafiei N, Nasrollahzadeh M, Hegde G (2021) Chapter 10 – biopolymer-based (nano)materials for supercapacitor applications. In: Nasrollahzadeh M (ed) Biopolymer-based metal nanoparticle chemistry for sustainable applications, vol 2021. Elsevier, pp 609–671. https://doi.org/10.1016/B978-0-323-89970-3.00010-X. ISBN 9780323899703

    Chapter  Google Scholar 

  7. Rasul G (2016) Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environ Dev 18:14–25. https://doi.org/10.1016/j.envdev.2015.12.001

    Article  Google Scholar 

  8. Sims B, Kienzle J (2017) Sustainable agricultural mechanization for smallholders: what is it and how can we implement it? Agriculture 7(6):50. https://doi.org/10.3390/agriculture7060050

    Article  Google Scholar 

  9. Levidow L, Zaccaria D, Maia R, Vivas E, Todorovic M, Scardigno A (2014) Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric Water Manag 146:84–94. https://doi.org/10.1016/j.agwat.2014.07.012

    Article  Google Scholar 

  10. Canovas-Carrasco S, Garcia-Sanchez A, Garcia-Haro J (2018) On the nature of energy-feasible wireless nano sensor networks. Sensors 18:1356. https://doi.org/10.3390/S18051356

    Article  Google Scholar 

  11. Phillips JD (2021) Energy harvesting in nanosystems: powering the next generation of the Internet of Things. Front Nanotechnol 3:5. https://doi.org/10.3389/fnano.2021.633931

    Article  Google Scholar 

  12. Kurzweil (2015) Chapter 19 – electrochemical double-layer capacitors, moseley and garche. In: Electrochemical energy storage for renewable sources and grid balancing. Elsevier, pp 345–407. https://doi.org/10.1016/B978-0-444-62616-5.00019-X

    Chapter  Google Scholar 

  13. Silva A, Liu M, Moghaddam M (2012) Power-management techniques for wireless sensor networks and similar low-power communication devices based on non-rechargeable batteries. J Comput Netw Commun 757291:10. https://doi.org/10.1155/2012/757291

    Article  Google Scholar 

  14. Weselek A, Ehmann A, Zikeli S et al (2019) Agrophotovoltaic systems: applications, challenges, and opportunities. a review. Agron Sustain Dev 39:35. https://doi.org/10.1007/s13593-019-0581-3

    Article  Google Scholar 

  15. Rai GD (2020) Non-conventional energy sources. Khanna Publishers, New Delhi

    Google Scholar 

  16. Jadhav S, Kalbande S (2012) Effect of raw material and moisture content on performance of piston press biomass briquetting machine. Green Farming 3(6):716–719

    Google Scholar 

  17. Pande M, Bhaskarwar AN (2012) Biomass conversion to energy. In: Baskar C, Baskar S, Dhillon R (eds) Biomass conversion. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_1

    Chapter  Google Scholar 

  18. Jadhav SK, Wakudkar H, Bhardwaj M, Soni R (2020) Effect of torrefaction on physio-chemical properties of paddy straw and its size reduction. Int J Curr Microbiol App Sci 9(01):7–18. https://doi.org/10.20546/ijcmas.2020.901.002

    Article  Google Scholar 

  19. IEA (2022) Bioenergy. IEA, Paris. https://www.iea.org/reports/bioenergy. License: CC BY 4.0

  20. Baruah D, Kalita P, Moholkar VS (2021) A comprehensive study on utilization of producer gas as IC engine fuel. In: Singh AP, Kumar D, Agarwal AK (eds) Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines. Energy, environment, and sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-1513-9_6

    Chapter  Google Scholar 

  21. IEA (2020) Outlook for biogas and biomethane: prospects for organic growth. IEA, Paris. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth. License: CC BY 4.0

  22. Hotta SK, Sahoo N, Mohanty K (2019) Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas. Renew Energy 134:1307–1319. https://doi.org/10.1016/j.renene.2018.09.049

    Article  Google Scholar 

  23. Nijaguna BT (2021) Biogas technology. New Age International, New Delhi

    Google Scholar 

  24. Şen Z (2018) 4.12 Hydropower conversion. In: Dincer I (ed) Comprehensive energy systems. Elsevier, pp 545–572. https://doi.org/10.1016/B978-0-12-809597-3.00416-8

    Chapter  Google Scholar 

  25. Kamran M (2021) Chapter 6 – hydro energy. In: Kamran M, Fazal MR (eds) Renewable energy conversion systems. Academic Press, pp 193–219. https://doi.org/10.1016/B978-0-12-823538-6.00007-5

    Chapter  Google Scholar 

  26. Hepbasli A (2018) 4.4 Heat pumps. In: Dincer I (ed) Comprehensive energy systems. Elsevier, pp 98–124. https://doi.org/10.1016/B978-0-12-809597-3.00404-1

    Chapter  Google Scholar 

  27. Rathore NS, Panwar NL (2021) Biomass production & efficient utilization for energy generation. New India Publishing Agency, New Delhi

    Book  Google Scholar 

  28. Kalogirou SA (2014) Chapter 7 – industrial process heat, chemistry applications, and solar dryers. In: Kalogirou SA (ed) Solar energy engineering, 2nd edn. Academic Press, pp 397–429. https://doi.org/10.1016/B978-0-12-397270-5.00007-8

    Chapter  Google Scholar 

  29. Ma Z, Venkataraman R, Farooque M (2009) Fuel cells – molten carbonate fuel cells | modeling. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, pp 519–532. https://doi.org/10.1016/B978-044452745-5.00272-0

    Chapter  Google Scholar 

  30. Kundu A, Jang JH (2009) Applications – portable | portable devices: fuel cells. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, pp 39–45. https://doi.org/10.1016/B978-044452745-5.00349-X

    Chapter  Google Scholar 

  31. Harb A (2011) Energy harvesting: state-of-the-art. Renew Energy 36(10):2641–2654

    Article  Google Scholar 

  32. Yang Z, Zhou S, Zu Z, Inman D (2018) High-performance piezoelectric energy harvesters and their applications. Joule 2(4):642–697. https://doi.org/10.1016/j.joule.2018.03.011

    Article  Google Scholar 

  33. Wu Y, Qiu J, Ji H, Zhou S (2018) Piezoelectric spring pendulum oscillator for animal/human motion energy harvesting. In: 2018 IEEE/ASME international conference on Advanced Intelligent Mechatronics (AIM), pp 774–779. https://doi.org/10.1109/AIM.2018.8452399

  34. Nastro A, Pienazza N, Baù M, Aceti P, Rouvala M, Ardito R, Ferrari M et al (2022) Wearable ball-impact piezoelectric multi-converters for low-frequency energy harvesting from human motion. Sensors 22(3):772. https://doi.org/10.3390/s22030772

    Article  Google Scholar 

  35. Li H, Lu J, Myjak MJ, Liss SA, Brown RS, Tian C, Deng ZD (2022) An implantable biomechanical energy harvester for animal monitoring devices. Nano Energy 98:107290

    Article  Google Scholar 

  36. Catolico N, Ge S, John M (2016) Numerical modeling of a soil bore hole thermal energy storage system. Vadose Zone J 15. https://doi.org/10.2136/vzj2015.05.0078

  37. Kubov VI, Dymytrov YY, Kubova RM (2016) Ltspice-model of thermoelectric peltier-seebeck element. In: IEEE 36th international conference on electronics and nanotechnology (ELNANO), pp 47–51. https://doi.org/10.1109/ELNANO.2016.7493007

  38. Rees S, Adjali M, Zhou Z, Davies M, Thomas H (2000) Ground heat transfer effects on the thermal performance of earth-contact structures. Renew Sust Energ Rev 4:213–265. https://doi.org/10.1016/S1364-0321(99)00018-0

    Article  Google Scholar 

  39. Akrouch G, Sánchez M, Briaud JL (2015) Effect of the unsaturated soil condition on the thermal efficiency of energy piles. Geotech Special Publication:1618–1627. https://doi.org/10.1061/9780784479087.146

  40. Kovacic D (2019) Sensors and their application in precision agriculture. Graduate thesis, University of Osijek

    Google Scholar 

  41. Povh FP, Yasin M, Harun SW, Arof H (2014) Optical sensors applied in agricultural crops. In: Optical sensors- new developments and practical applications. InTech, New Delhi, pp 141–163

    Google Scholar 

  42. Paterova T, Prauzek M, Konecny J, Ozana S, Zmij P, Stankus M, Weise D, Pierer A (2021) Environment-monitoring IoT devices powered by a TEG which converts thermal flux between air and near-surface soil into electrical energy. Sensors 21(23):8098. https://doi.org/10.3390/s21238098

    Article  Google Scholar 

  43. Aridi R, Faraj J, Ali S, Lemenand T, Khaled M (2021) Thermoelectric power generators: state-of-the-art, heat recovery method, and challenges. Electricity 2(3):359–386. https://doi.org/10.3390/electricity2030022

    Article  Google Scholar 

  44. Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Sustainable energy harvesting technologies – past, present and future. IntechOpen. https://doi.org/10.5772/25731

    Chapter  Google Scholar 

  45. Zhai L, Gao L, Wang Z, Dai K, Wu S, Mu X (2022) An energy harvester coupled with a triboelectric mechanism and electrostatic mechanism for biomechanical energy harvesting. Nano 12:933. https://doi.org/10.3390/nano12060933

    Article  Google Scholar 

  46. Lin Z, Chen J, Yang Y (2016) Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J Nanomater 5651613:24. https://doi.org/10.1155/2016/5651613

    Article  Google Scholar 

  47. Rodriguez JC, Nico V, Punch JA (2019) Vibration energy harvester and power management solution for battery-free operation of wireless sensor nodes. Sensors 19(17):3776. https://doi.org/10.3390/s19173776

    Article  Google Scholar 

  48. Rashika ME, Pushpalatha S (2018) A Wi-fi based animal health monitoring system. Int J Eng Res Technol 6(13):1–4

    Google Scholar 

  49. Roy S, Kabir MH, Salauddin M, Halim MA (2022) An electromagnetic wind energy harvester based on rotational magnet pole-pairs for autonomous IoT applications. Energies 15(15):5725. https://doi.org/10.3390/en15155725

    Article  Google Scholar 

  50. Patel S, Novak N (2021) The pyroelectric energy harvesting and storage performance around the ferroelectric/antiferroelectric transition in PNZST. Journal of Materials Science 56(2):1133–1146

    Google Scholar 

  51. Thakre A, Kumar A, Song H-C, Jeong D-Y, Ryu J (2019) Pyroelectric energy conversion and its applications –flexible energy harvesters and sensors. Sensors 19(9):2170. https://doi.org/10.3390/s19092170

    Article  Google Scholar 

  52. Safak M (2014) Wireless sensor and communication nodes with energy harvesting. J Commun Navig Sens Serv 1(1):47–66

    Google Scholar 

  53. Wang Y, Liu Y, Wang C, Li Z, Sheng X, Lee HG, Chang N, Yang H (2016) Storage-less and converter-less photovoltaic energy harvesting with maximum power point tracking for internet of things. IEEE Trans Comput Aid Desig Integr Circuits Syst 35(2):173–186

    Article  Google Scholar 

  54. Kausar AZ, Reza AW, Saleh MU, Ramiah H (2014) Energizing wireless sensor networks by energy harvesting systems: scopes, challenges, and approaches. Renew Sust Energ Rev 38:973–989

    Article  Google Scholar 

  55. Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sust Energ Rev 55:1041–1054

    Article  Google Scholar 

  56. Li J, Liu A, Shen G, Li L, Sun C, Zhao F (2015) Retro-vlc: enabling battery-free duplex visible light communication for mobile and IoT applications. In: Proceedings of the 16th international workshop on mobile computing systems and applications. ACM, pp 21–26. https://doi.org/10.1016/j.nanoen.2022.107290

  57. Hawkes AM, Katko AR, Cummer SA (2013) A microwave metamaterial with integrated power harvesting functionality. Appl Phys Lett 103(16):163901

    Article  Google Scholar 

  58. Shenck NS, Paradiso JA (2001) Energy scavenging with shoe mounted piezoelectrics. IEEE Micro 21(3):30–42

    Article  Google Scholar 

  59. Mishra D, De S, Chowdhury KR (2015) Charging time characterization for wireless of energy transfer. IEEE Trans Circuits Syst II Exp Briefs 62(4):362–366

    Google Scholar 

  60. Tervo J, Manninen A, Ilola R, Hanninen H (2009) State-of-the-art of thermoelectric materials processing. Espoo, VTT Technical Research Centre of Finland 124:1–30

    Google Scholar 

  61. Ferrari M, Ferrari V, Marioli D, Taroni A (2006) Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems. IEEE Trans Instrum Meas 55(6):2096–2101

    Article  Google Scholar 

  62. Cuadras A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity. Sensors Actuators A Phys 158(1):132–139

    Article  Google Scholar 

  63. Wang Z, Leonov V, Fiorini P, Van Hoof C (2009) Realization of a wearable miniaturized thermoelectric generator for human body applications. Sensors Actuators A Phys 156(1):95–102

    Article  Google Scholar 

  64. Leonov V, Torfs T, Fiorini P, Van Hoof C (2007) Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensors J 7(5):650–657

    Article  Google Scholar 

  65. Chen ZG, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci Mater Int 22(6):535–549

    Article  Google Scholar 

  66. Satyala N, Norouzzadeh P, Vashaee D (2014) Nano bulk thermoelectrics: concepts, techniques, and modeling. In: Nanoscale thermo-electrics. Springer, Cham, pp 141–183

    Chapter  Google Scholar 

  67. Singh H, Lalchand CM (2012) Self-powered wearable health monitoring system. Adv Mater Res 403:3839–3846

    Google Scholar 

  68. Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio-mems applications. In: Smart structures and materials: industrial and commercial applications of smart structures technologies, vol 4332. International Society for Optics and Photonics, pp 429–439

    Google Scholar 

  69. Zurbuchen A, Pfenniger A, Stahel A, Stoeck CT, Vandenberghe S, Koch VM, Vogel R (2013) Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann Biomed Eng 41(1):131–141

    Article  Google Scholar 

  70. Discenzo FM, Chung D, Loparo KA (2006) Power scavenging enables maintenance-free wireless sensor nodes. In: Proceedings of the 6th international conference on complex systems

    Google Scholar 

  71. Sterken T, Fiorini P, Baert K, Puers R, Borghs G (2003) An electret-based electrostatic μ-generator in transducer, solid-state sensors, actuators and microsystems, In: 12th international conference proceeding transducers IEEE, vol. 3, issue 2, pp 1291–1294. https://doi.org/10.1109/SENSOR.2003.1217009

  72. Sazonov E, Li H, Curry D, Pillay P (2009) Self-powered sensors for monitoring of highway bridges. IEEE Sensors J 9(11):1422–1429

    Article  Google Scholar 

  73. Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10(12):4939–4943. https://doi.org/10.1021/nl102959k

    Article  Google Scholar 

  74. Kwon J, Seung W, Sharma BK, Kim SW, Ahn JH (2012) A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ Sci 5(10):8970–8975

    Article  Google Scholar 

  75. Hwang GT, Park H, Lee JH, Oh S et al (2014) Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater 26(28):4880–4887. https://doi.org/10.1002/adma.201400562

    Article  Google Scholar 

  76. Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Ph.D. dissertation, University of California

    Google Scholar 

  77. Starner T (1996) Human-powered wearable computing. IBM Syst J 35(3.4):618–629

    Article  Google Scholar 

  78. Lai E, Redfern A, Wright P (2005) Vibration powered battery assisted passive RFID tag. In: Embedded and ubiquitous computing, pp 1058–1068

    Google Scholar 

  79. Enescu D (2019) Thermoelectric energy harvesting: basic principles and applications. In: Green energy advances. IntechOpen. https://doi.org/10.5772/intechopen.83495

    Chapter  Google Scholar 

  80. Nesser H, Lubineau G (2021) Strain sensing by electrical capacitive variation: from stretchable materials to electronic interfaces. Adv Electron Mater 7(10):2100190. https://doi.org/10.1002/aelm.202100190

    Article  Google Scholar 

  81. Petrović D, Jurišić M, Tadić V, Plaščak I, Barač Ž (2018) Different sensor systems for the application of variable rate technology in permanent crops. Tehnicki Glasnik 12(3):188–195. https://doi.org/10.31803/tg-20180213125928

    Article  Google Scholar 

  82. Gill R, Chawla P (2022) Energy harvesting sensors based internet of things system for precision agriculture. In: 2nd International conference on innovative practices in technology and management (ICIPTM), pp 270–273. https://doi.org/10.1109/ICIPTM54933.2022.9754203

  83. Oliveira LFP, Moreira AP, Silva MF (2021) Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics 10(2):52. https://doi.org/10.3390/robotics10020052

    Article  Google Scholar 

  84. Tsouros DC, Bibi S, Sarigiannidis PG (2019) A review on UAV-based applications for precision agriculture. Information 10(11):349. https://doi.org/10.3390/info10110349

    Article  Google Scholar 

  85. Chen H, Chen LJ, Albright TP (2007) Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: a case of ragweed (Ambrosia artemisiifolia L.) distribution in China. Chin Sci Bull 52(9):1223–1230. https://doi.org/10.1007/s11434-007-0192-2

    Article  Google Scholar 

  86. Miskam MA, Nasiruddin AB, Rahim IA (2009) Preliminary design on the development of wireless sensor network for paddy rice cropping monitoring application in Malaysia. Eur J Sci Res 37(4):649–657

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jadhav, S.K., Shreelavaniya, R. (2023). Energy Harvesting Systems for Agricultural Needs. In: Nella, A., Bhowmick, A., Kumar, C., Rajagopal, M. (eds) Energy Harvesting Trends for Low Power Compact Electronic Devices. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-35965-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35965-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35964-4

  • Online ISBN: 978-3-031-35965-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics