Skip to main content

The Intersection of Machine Learning with Forecasting and Optimisation: Theory and Applications

  • Chapter
  • First Online:
Forecasting with Artificial Intelligence

Abstract

Forecasting and optimisation are two major fields of operations research that are utilised to deal with uncertainties and to make the best decisions. These methods are widely used in academia and practice and have contributed to each other growth in several ways. These methods can be used together to solve various problems in transportation, scheduling, production planning, and energy where both forecasting and optimisation are needed. However, the nature of the relationship between these two methods and how they can be integrated for better performance have not been explored or understood enough. We advocate the integration of these two methods and explore several problems that require both forecasting and optimisation. I will investigate some of the methodologies that lie at the intersection of machine learning with forecasting and optimisation to address real-world problems. I will provide several research directions and use cases for researchers and practitioners interested to explore this interesting arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this study, we use forecasting and predictive analytics as interchangeable words. Similarly, (constrained) optimisation, and prescriptive analytics are used as interchangeable words.

References

  • Abolghasemi, M., Abbasi, B. & HosseiniFard, Z. (2023). Machine learning for satisficing operational decision making: A case study in blood supply chain, International Journal Forecasting.

    Google Scholar 

  • Abolghasemi, M., & Bean, R. (2022). How to predict and optimise with asymmetric error metrics. GitHub, Preprint.

    Google Scholar 

  • Abolghasemi, M., & Esmaeilbeigi, R. (2021). State-of-the-art predictive and prescriptive analytics for IEEE CIS 3rd Technical Challenge. arXiv preprint arXiv:2112.03595

  • Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2021). Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940

  • Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning, 106(7), 1039–1082.

    Google Scholar 

  • Bertsimas, D., & Dunn, J. (2019). Machine learning under a modern optimization lens. Dynamic Ideas LLC.

    Google Scholar 

  • Bertsimas, D., & Kallus, N. (2020, March). From predictive to prescriptive analytics. Management Science, 66(3), 1025–1044.

    Google Scholar 

  • Brys, T., Harutyunyan, A., Taylor, M. E., & Nowe, A. (2015). Policy transfer using reward shaping. In AAMAS (pp. 181–188).

    Google Scholar 

  • Cappart, Q., Chetelat, D., Khalil, E., Lodi, A., Morris, C., & Veličković, P. (2021). Combinatorial optimization and reasoning with graph neural networks. arXiv preprint arXiv:2102.09544

  • Chatzos, M., Fioretto, F., Mak, T. W. K., & Van Hentenryck, P. (2020). High-fidelity machine learning approximations of large-scale optimal power flow. arXiv preprint arXiv:2006.16356

  • Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial optimization algorithms over graphs. Advances in neural information processing systems, 30.

    Google Scholar 

  • De Raedt, L., Passerini, A., & Teso, S. (2018). Learning constraints from examples. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1).

    Google Scholar 

  • Demirović, E., Stuckey, P. J., Bailey, J., Chan, J., Leckie, C., Ramamohanarao, K., & Guns, T. (2019). An investigation into prediction+ optimisation for the knapsack problem. In International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research (pp. 241–257). Springer.

    Google Scholar 

  • Detassis, F., Lombardi, M., & Milano, M. (2021). Teaching the old dog new tricks: Supervised learning with constraints. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 3742–3749).

    Google Scholar 

  • Donti, P., Amos, B., & Zico Kolter, J. (2017). Task-based end-to-end model learning in stochastic optimization. In Advances in neural information processing systems, 30.

    Google Scholar 

  • Donti, P. L., Rolnick, D., & Zico Kolter, J. (2021). Dc3: A learning method for optimization with hard constraints. arXiv preprint arXiv:2104.12225

  • Elmachtoub, A., Cheuk Nam Liang, J., & McNellis, R. (2020). Decision trees for decision-making under the predict-then-optimize framework. In International Conference on Machine Learning (pp. 2858–2867). PMLR.

    Google Scholar 

  • Elmachtoub, A. N., & Grigas, P. (2022). Smart “predict, then optimize”. Management Science, 68(1), 9–26.

    Google Scholar 

  • Fioretto, F., Van Hentenryck, P., Mak, T. W. K., Tran, C., Baldo, F., & Lombardi, M. (2020a). Lagrangian duality for constrained deep learning. In Joint European conference on machine learning and knowledge discovery in databases (pp. 118–135). Springer.

    Google Scholar 

  • Fioretto, F., Van Hentenryck, P., Mak, T. W. K., Tran, C., Baldo, F., & Lombardi, M. (2020b). A lagrangian dual framework for deep neural networks with constraints optimization. In European conference on machine learning and principles and practice of knowledge discovery in databases (ECML-PKDD). Vol. 12461. Lecture Notes in Computer Science (pp. 118–135). Springer.

    Google Scholar 

  • Goodwin, P. (2009). Common sense and hard decision analysis: Why might they conflict? Management Decision, 47(3), 427–440.

    Google Scholar 

  • Guo, Z. X., Wong, W. K., & Li, M. (2013). A multivariate intelligent decisionmaking model for retail sales forecasting. Decision Support Systems, 55(1), 247–255.

    Google Scholar 

  • He, H., Daume III, H., & Eisner, J. M. (2014). Learning to search in branch and bound algorithms. Advances in neural information processing systems, 27.

    Google Scholar 

  • Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017, April). Imitation learning: A survey of learning methods. ACM Computing Surveys, 50(2), 1–35.

    Google Scholar 

  • Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016, February). Learning to branch in mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).

    Google Scholar 

  • Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end constrained optimization learning: A survey. arXiv preprint arXiv:2103.16378

  • Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2022). Predicting tactical solutions to operational planning problems under imperfect information. Informs Journal on Computing, 34(1), 227–242.

    Google Scholar 

  • Mandi, J., Bucarey, V., Tchomba, M. M. K., & Guns, T. (2022). Decision-focused learning: Through the lens of learning to rank. In International conference on machine learning (pp. 14935–14947). PMLR.

    Google Scholar 

  • Mandi, J., Stuckey, P. J., Guns, T., et al. (2020). Smart predict-and-optimize for hard combinatorial optimization problems. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 2, pp. 1603–1610).

    Google Scholar 

  • Marcos Alvarez, A., Wehenkel, L., & Louveaux, Q. (2015). Machine learning to balance the load in parallel branch-and-bound.

    Google Scholar 

  • Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning for combinatorial optimization: A survey. Computers & Operations Research, 134, 105400.

    Google Scholar 

  • Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021). Contrastive losses and solution caching for predict-and-optimize. In Proceedings of the thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21).

    Google Scholar 

  • Popescu, A., Polat-Erdeniz, S., Felfernig, A., Uta, M., Atas, M., Le, V-M., Pilsl, K., Enzelsberger, M., & Tran, T. N. T. (2022, February). An overview of machine learning techniques in constraint solving. Journal of Intelligent Information Systems, 58(1), 91–118.

    Google Scholar 

  • Shah, S., Wilder, B., Perrault, A., & Tambe, M. (2022). Learning (local) surrogate loss functions for predict-then-optimize problems. arXiv preprint arXiv:2203.16067.

  • Shen, Y., Sun, Y., Li, X., Eberhard, A., & Ernst, A. (2023). Adaptive solution prediction for combinatorial optimization. European Journal of Operational Research, 309(3), 1392–1408.

    Google Scholar 

  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016, January). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Google Scholar 

  • Syntetos, A. A., Nikolopoulos, K., & Boylan, J. E. (2010). Judging the judges through accuracy-implication metrics: The case of inventory forecasting. International Journal of Forecasting, 26(1), 134–143.

    Google Scholar 

  • Tran, C., Fioretto, F., & Van Hentenryck, P. (2021, May). Differentially private and fair deep learning: A lagrangian dual approach. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 11, pp. 9932–9939).

    Google Scholar 

  • Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. Advances in neural information processing systems, 28.

    Google Scholar 

  • Wilder, B., Dilkina, B., & Tambe, M. (2019, July). Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 1, pp. 1658–1665).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Abolghasemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abolghasemi, M. (2023). The Intersection of Machine Learning with Forecasting and Optimisation: Theory and Applications. In: Hamoudia, M., Makridakis, S., Spiliotis, E. (eds) Forecasting with Artificial Intelligence. Palgrave Advances in the Economics of Innovation and Technology. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-35879-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35879-1_12

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-031-35878-4

  • Online ISBN: 978-3-031-35879-1

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics