Skip to main content

Abstract

Starch, in its natural state, has some limitations which restrict its wide usability for different food and non-food applications. Therefore, exploring specific technologies that could be utilized to modify starch properties has become significant. Compared to the other techniques, gamma irradiation has been found to be a superior and effective technique for starch modification. Gamma Irradiation is widely associated with decreasing the peak, setback, trough and final viscosities of the starch, swelling index, and apparent amylose content. Gamma irradiation improves the functional characteristics of the starch, like decreased retrogradation and gelatinization enthalpy, which makes the modified starch a good alternative additive to be used in frozen foods. This chapter aims to summarize the effects of gamma irradiation on various properties of starch, such as physicochemical and rheological properties, functional characteristics, and thermal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu, J. O., Duodu, K. G., & Minnaar, A. (2006). Effect of g-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chemistry, 95, 386–e393.

    Article  Google Scholar 

  • Al-Assaf, S., Phillips, G. O., Williams, P. A., & duPlessis, T. A. (2007). Application of ionizing radiations to produce new polysaccharides and proteins with enhanced functionality. Nuclear Instruments and Methods in Physics Research Section B, 265, 37–43.

    Article  CAS  Google Scholar 

  • Al-Kaisey, M. T., Mohammed, M. A., Alwan, A. K. H., & Mohammed, M. H. (2002). EU legislative background on food irradiation technology: The Italian attitude,and physicochemical properties of maize starch by gamma irradiation treatments. LWT – Food Science and Technology, 46, 156–116.

    Google Scholar 

  • Arvanitoyannis, I. S. (2010). Irradiation of food commodities: Techniques, applications, detection, legislation, safety and consumer opinion (1st ed.). Elsevier Inc.

    Google Scholar 

  • Asp, N. G., & Björck, I. (1992). Resistant starch. Trends in Food Science & Technology, 3, 111–114.

    Google Scholar 

  • Baker, A. A., Miles, M. J., & Helbert, W. (2001). Internal structure of the starch granule revealed by AFM. Carbohydrate Research, 330, 249–e256.

    Article  CAS  PubMed  Google Scholar 

  • Bao, J., Ao, Z., & Jane, J. L. (2005). Characterization of physical properties of flour and starch obtained from gamma-irradiated white rice. Starch/St€arke, 57, 480–e487.

    Article  CAS  Google Scholar 

  • Bashir, K., & Aggarwal, M. (2016a). Effects of gamma irradiation on cereals and pulses – A review. International Journal of Recent Scientific Research, 7(12), 14680–14686.

    Google Scholar 

  • Bashir, K., & Aggarwal, M. (2016b). Effects of gamma irradiation on the physicochemical, thermal and functional properties of chickpea flour. LWT-Food Science and Technology, 69, 614–622.

    Article  CAS  Google Scholar 

  • Bashir, K., & Aggarwal, M. (2017). Physicochemical, thermal and functional properties of gamma irradiated chickpea starch. International Journal of Biological Macromolecules, 97, 426–433.

    Article  CAS  PubMed  Google Scholar 

  • Bashir, K., & Aggarwal, M. (2019). Physicochemical, structural and functional properties of native and irradiated starch: A review. Journal of Food Science and Technology, 56(2), 513–523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashir, K., Jan, K., & Aggarwal, M. (2017a). Thermo-rheological and functional properties of gamma-irradiated wholewheat flour. International Journal of Food Science & Technology, 52(4), 927–935.

    Article  CAS  Google Scholar 

  • Bashir, K., Swer, T. L., Prakash, K. S., & Aggarwal, M. (2017b). Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch. LWT-Food Science and Technology, 76, 131–139.

    Article  CAS  Google Scholar 

  • Bashir, K., Jan, K., Kamble, D. B., Maurya, V. K., Jan, S., & Swer, T. L. (2021). History, status and regulatory aspects of gamma irradiation for food processing. A Comprehensive Review, 101–107. Elsevier.

    Google Scholar 

  • Becker, R. L. (1983). In P. S. Elias & A. J. Cohen (Eds.), Recent advances in food irradiation (p. 285). Elsevier Biomedical Press.

    Google Scholar 

  • Bettaïeb, N. B., Jerbi, M. T., & Ghorbel, D. (2014). Gamma radiation influences pasting, thermal and structural properties of corn starch. Radiation Physics and Chemistry, 103, 1–8.

    Article  Google Scholar 

  • Bhat, R., & Karim, A. A. (2008). Impact of radiation processing on starch. Comprehensive Reviews in Food Science and Food Safety, 8, 44–58.

    Article  Google Scholar 

  • Bravo, L., Siddhuraju, P., & Saura-Calixto, F. (1998). Effect of various processing methods on the in vitro starch digestibility and resistant starch content of Indian pulses. Journal of Agricultural and Food Chemistry, 46, 4667–4674.

    Article  CAS  Google Scholar 

  • Brigide, P., & Canniatti-Brazaca, S. G. (2006). Antinutrients and “in vitro” availability of iron in irradiated common beans (Phaseolus vulgaris). Food Chemistry, 98(1), 85–89.

    Article  CAS  Google Scholar 

  • Brunnschweiler, J., Luethi, D., Handschin, S., Farah, Z., Escher, F., & Conde-Petit, B. (2005). Isolation, physicochemical characterization and application of yam (Dioscorea spp.) starch as thickening and gelling agent. Starch/St€arke, 57, 107–e117.

    Article  CAS  Google Scholar 

  • Chung, H.-J., & Liu, Q. (2009). Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch. Journal of Food Science, 74, 353–361.

    Article  Google Scholar 

  • Chung, H. J., & Liu, Q. (2010). Molecular structure and physicochemical properties of potato and bean starches as affected by gamma-irradiation. International Journal of Biological Macromolecules, 47(2), 214–222.

    Google Scholar 

  • Chung, H.-J., Lee, S.-Y., Kim, J.-H., Lee, J.-W., Byun, M.-W., & Lim, S.-T. (2010a). Pasting characteristics and in vitro digestibility of gamma irradiated RS-4 waxy maize starch. Journal of Cereal Science, 52, 53–58.

    Article  CAS  Google Scholar 

  • Chung, H. J., Lee, S. Y., Kim, J. H., Lee, J. W., Byun, M. W., & Lim, S. T. (2010b). Pasting characteristics and in vitro digestibility of g-irradiated RS4 waxy maize starches. Journal of Cereal Science, 52(1), 53–58.

    Article  CAS  Google Scholar 

  • Ciesla, K., Svensson, E., & Eliasson, A. C. (1999). Preliminary studies using differential scanning calorimetry of radiation-induced transformations in starch and flour. Journal of thermal analysis and calorimetry, 56(3), 1197–1202.

    Google Scholar 

  • Ciesla, K., & Eliasson, A. C. (2002). Influence of gamma radiation on potato starch gelatinization studied by differential scanning calorimetry. Radiation Physics and Chemistry, 64, 137–e148.

    Article  CAS  Google Scholar 

  • Ciesla, K., Gwardys, E., & Zoltowski, T. (1991a). Changes of relative crystallinity of potato starch under gamma irradiation. Starch/St€arke, 43, 251–e253.

    Article  CAS  Google Scholar 

  • Ciesla, K., Zoltowski, T., & Mogilevsky, L. Y. (1991b). Detection of starch transformation under g-irradiation by small-angle X-ray scattering. Starch/St€arke, 43, 11–e12.

    Article  CAS  Google Scholar 

  • Dar, M. Z., Deepika, K., Jan, K., Swer, T. L., Kumar, P., Verma, R., Verma, K., Prakash, K. S., Jan, S., & Bashir, K. (2018). Modification of structure and physicochemical properties of buckwheat and oat starch by c-irradiation. International Journal of Biological Macromolecules, 108, 1348–1356. https://doi.org/10.1016/j.ijbiomac.2017.11.067

    Article  CAS  PubMed  Google Scholar 

  • Diehl, J. (1985). Five year’s year’s experience of the international facility for food irradiation technology. Radiation Physics and Chemistry, 25, 227–231. Economics. 6: 381–405.

    Google Scholar 

  • Ebrahimi, S. R., Nikkhah, A., Sadeghi, A. A., & Raisali, G. (2009). Chemical composition, secondary compounds, ruminal degradation and in vitro crude protein digestibility of gamma irradiated canola seed. Animal Feed Science and Technology, 151(3–4), 184–193.

    Article  CAS  Google Scholar 

  • El Saadany, R. M. A., El Saadany, F. M., & Foda, Y. H. (1974a). Modification of rice starch by gamma irradiation to produce soluble starch of low viscosity for industrial purposes. Starch‐Stärke, 26(12), 422–425.

    Google Scholar 

  • El Saadany, R. M. A., Abd, E. F., El Safti, A., & El Saadany, F. M. (1974b). Effect of gamma irradiation on Egyptian sweet potato starch. Starch/St€arke, 26, 190–192.

    Article  Google Scholar 

  • Esteves, M. P., Gírio, F. M., Amaral-Collaço, M. T., Andrade, M. E., & Empis, J. (1997). Characterization of starch from white and black pepper treated by ionizing radiation. Sciences des Aliments, 17, 289–298.

    CAS  Google Scholar 

  • Ezekiel, R., Rana, G., Singh, N., & Singh, S. (2007). Physicochemical, thermal and pasting properties of starch separated from ϒg-irradiated and stored potatoes. Food Chemistry, 105, 1420e1429.

    Article  Google Scholar 

  • Farag, M. D. H. (1986). Radiation deactivation of anti nutritional factors: Trypsin inhibitor and hemagglutinin in soybeans. Egyptian Journal of Radiation Sciences and Applications, 6(2), 207–215.

    Google Scholar 

  • Farkas, J. (1998). Irradiation as a method for decontaminating food – A review. International Journal of Food Microbiology, 44(3), 189–204.

    Article  CAS  PubMed  Google Scholar 

  • Farkas, J., & Mohacsi-Farkas, C. (2011). History and future of food irradiation. Trends in Food Science and Technology, 22, 121–126. Food samples on consumer acceptance of food irradiation. Food Technology. 48(12).

    Article  CAS  Google Scholar 

  • Gani, A., Bashir, M., Wani, S. M., & Masoodi, F. A. (2012). Modification of bean starch by g-irradiation: Effect on functional and morphological properties. LWT-Food Science and Technology, 49, 162–e169.

    Article  CAS  Google Scholar 

  • Gani, A., Gazanfar, T., Jan, R., Wani, S. M., & Masoodi, F. A. (2013). Effect of gamma irradiation on the physicochemical and morphological properties of starch extracted from lotus stem harvested from Dal lake of Jammu and Kashmir, India. Journal of the Saudi Society of Agricultural Sciences, 12, 109–e115.

    Article  Google Scholar 

  • Hassan, A. B., Mahmoud, N. S., Elmamoun, K., Adiamo, O. Q., & Ahmed, I. A. M. (2018). Effects of gamma irradiation on the protein characteristics and functional properties of sesame (Sesamum indicum L.) seeds. Radiation Physics and Chemistry, 144, 85–91.

    Article  CAS  Google Scholar 

  • Hussain, P. R., Wani, I. A., Suradkar, P. P., & Dar, M. A. (2014). Gamma irradiation induced modification of bean polysaccharides: Impact on physicochemical, morphological and antioxidant properties. Carbohydrate Polymers, 110, 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Jan, K., Bashir, K., & Maurya, V. K. (2021). Gamma irradiation and food properties in Innovative Food Processing Technologies. A Comprehensive Review, 21–60. Elsevier.

    Google Scholar 

  • Jo, C., Kang, H., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). Pectin- and gelatin-based film: Effect of gamma irradiation on the mechanical properties and biodegradation. Radiation Physics and Chemistry, 72(6), 745–750.

    Article  CAS  Google Scholar 

  • Kamal, H., Sabry, G. M., Lotfy, S., Abdallah, N. M., Ulanski, P., Rosiak, J., et al. (2007). Controlling of degradation effects in radiation processing of starch. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 44, 865–e875.

    Article  CAS  Google Scholar 

  • Kertez, Z. I., Schulz, E. R., Fox, G., & Gibson, M. (1959). Effects of ionizing radiation on plant tissues. IV. Some effects of gamma radiation on starch and starch fractions. Journal of Food Science, 24(6), 609–617.

    Article  Google Scholar 

  • Kim, J. K., Jo, C., Park, H. J., & Byun, M. W. (2008). Effect of gamma irradiation on the physicochemical properties of a starch-based film. Food Hydrocolloids, 22, 248–254.

    Article  CAS  Google Scholar 

  • Kong, X. (2018). Gamma irradiation of starch. In Physical modifications of starch (pp. 63–96).

    Google Scholar 

  • Kong, X., Kasapis, S., Bao, J., & Corke, H. (2009). Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch. Radiation Physics and Chemistry, 78, 954–e960.

    Article  CAS  Google Scholar 

  • Kumar, P., Prakash, K. S., Jan, K., Swer, T. L., Jan, S., Verma, R., Deepika, K., Dar, M. Z., Verma, K., & Bashir, K. (2017). Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch. Journal of Cereal Science, 77, 194–200.

    Article  CAS  Google Scholar 

  • Lam, N. D., Quynh, T. M., Diep, T. B., Binh, P. T., & Lam, T. D. (2021). Effect of gamma irradiation and pyrolysis on indigestible fraction, physicochemical properties, and molecular structure of rice starch. Journal of Food Processing and Preservation, 45(10), e15880.

    Google Scholar 

  • Lee, Y. S., Oh, S. H., Lee, J. W., Kim, J. H., Kim, D. S., & Byun, M. W. (2003). Effects of gamma irradiation on physicochemical and textural properties of starches. Food Science and Biotechnology, 12, 508–e512.

    CAS  Google Scholar 

  • Lima, D. C., Miano, A. C., Augusto, P. E. D., & Arthur, V. (2019). Gamma irradiation of common beans: Effect on nutritional and technological properties. LWT, 116, 108539.

    Article  CAS  Google Scholar 

  • Liu, T., Ma, Y., Xue, S., & Shi, J. (2012). Modifications of structure and physicochemical properties of maize starch by gamma irradiation treatments. LWT – Food Science and Technology, 46, 156–163.

    Article  CAS  Google Scholar 

  • Lopez, H. W., Levrat-Verny, M. A., Coudray, C., Besson, C., Krespine, V., Messager, A., ... & Remesy, C. (2001). Class 2 resistant starches lower plasma and liver lipids and improve mineral retention in rats. The Journal of Nutrition, 131(4), 1283–1289.

    Google Scholar 

  • Lu, Z. H., Donner, E., Yada, R. Y., & Liu, Q. (2012). Impact of g-irradiation, CIPC treatment, and storage conditions on physicochemical and nutritional properties of potato starches. Food Chemistry, 133, 1188–e1195.

    Article  CAS  Google Scholar 

  • Lusk, J. L., Roosen, J., & Bieberstein, A. (2014). Consumer acceptance of new food technologies: causes and roots of controversies. Annual Review of Resource Economics, 6(1), 381–405.

    Google Scholar 

  • Nene, S. P., Vakil, U. K., & Sreenivasan, A. (1975). Effect of gamma radiation on physico-chemical character of red gram (Cajanus cajan) starch. Journal of Food Science, 40, 943947.

    Google Scholar 

  • Osman, A. M. A., Hassan, A. B., Osman, G. A., Mohammed, N., Rushdi, M. A., Diab, E. E., & Babiker, E. E. (2014). Effects of gamma irradiation and/or cooking on nutritional quality of faba bean (Vicia faba L.) cultivars seeds. Journal of Food Science and Technology, 51(8), 1554–1560.

    Article  CAS  PubMed  Google Scholar 

  • Perez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/St€arke, 62, 389e420.

    Google Scholar 

  • Pietranera, M. A., & Narvaiz, P. (2001). Examination of some protective conditions on technological properties of irradiated food grade polysaccharides. Radiation Physics and Chemistry, 60(3), 195–201.

    Google Scholar 

  • Polesi, L. F., Sarmento, S. B. S., & Canniatti-Brazaca, S. G. (2018). Starch digestibility and functional properties of rice starch subjected to gamma radiation. Rice Science, 25(1), 42–51.

    Article  Google Scholar 

  • Pohlman, A. J., Wood, O. B., & Mason, A. C. (1994). Influence of audiovisuals and food samples on consumer acceptance of food irradiation. Food Technology, 48.

    Google Scholar 

  • Rayas-Duarte, P., & Rupnow, J. H. (1993). Gamma-irradiation affects some physical properties of dry bean (Phaseolus vulgaris) starch. Journal of Food Science, 58, 389–e394.

    Article  CAS  Google Scholar 

  • Rombo, G. O., Taylor, J. R. N., & Minnaar, A. (2001). Effect of irradiation, with and without cooking of maize and kidney bean flours, on porridge viscosity and in vitro starch digestibility. Journal of the Science of Food and Agriculture, 81, 497–502.

    Article  CAS  Google Scholar 

  • Sádecká, J. (2007). Irradiation of spices. Czech Journal of Food Science, 25(5), 231–242.

    Article  Google Scholar 

  • Saini, V. (1968). Ionizing radiation effects on starch as shown by Staudinger index and differential thermal analysis. Journal of Food Science, 33, 136–138.

    Article  CAS  Google Scholar 

  • Severino, R., Ferrari, G., Vu, K. D., Donsì, F., Salmieri, S., & Lacroix, M. (2015). Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and salmonella Typhimurium on green beans. Food Control, 50, 215–222.

    Article  CAS  Google Scholar 

  • Singh, S., Singh, N., Ezekiel, R., & Kaur, A. (2011). Effects of gamma irradiation on the morphological, structural, thermal and rheological properties of potato starches. Carbohydrate Polymers, 83(4), 1521–1528. Technologies: Causes and roots of controversies. Annual Review of Resource.The effect of gamma irradiation on the viscosity of two barley cultivars for broiler. Trends in Food Science & Technology. 38(1): 60–74.

    Article  CAS  Google Scholar 

  • Sofi, B. A., Wani, I. A., Masoodi, F. A., Saba, I., & Muzaffar, S. (2013). Effect of gamma irradiation on physicochemical properties of broad bean (Vicia faba L.) starch. LWT-Food Science and Technology, 54, 63–e72.

    Article  CAS  Google Scholar 

  • Sudheesh, C., Sunooj, K. V., George, J., Kumar, S., & Sajeevkumar, V. A. (2019). Impact of gamma irradiation on the physico-chemical, rheological properties and in vitro digestibility of kithul (Caryota urens) starch; A new source of nonconventional stem starch. Radiation Physics and Chemistry, 162, 54–65.

    Article  CAS  Google Scholar 

  • Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165.

    Google Scholar 

  • Verma, R., Jan, S., Rani, S., Jan, K., Swer, T. L., Prakash, K. S., et al. (2018). Physicochemical and functional properties of gamma irradiated buckwheat and potato starch. Radiation Physics and Chemistry, 144, 37–42.

    Article  CAS  Google Scholar 

  • Verma, K., Jan, K., & Bashir, K. (2019). γ Irradiation of cowpea and potato starch: Effect on physicochemical functional and rheological properties. Journal of Food Processing & Technology, 10, 810.

    Article  Google Scholar 

  • Villavicencio, A. L. C., Mancini-Filho, J., Delincée, H., & Greiner, R. (2000). Effect of irradiation on anti-nutrients (total phenolics, tannins and phytate) in Brazilian beans. Radiation Physics and Chemistry, 57(3–6), 289–293.

    Article  CAS  Google Scholar 

  • Wani, I. A., Jabeen, M., Geelani, H., Masoodi, F. A., Saba, I., & Muzaffar, S. (2014). Effect of gamma irradiation on physicochemical properties of Indian Horse Chestnut (Aesculus indica Colebr.) starch. Food Hydrocolloids, 35, 253–e263.

    Article  CAS  Google Scholar 

  • Welch, R.W., (2011). Nutrient composition and nutritional quality of oats and comparisons with other cereals. In Oats: Chemistry and technology (pp. 95–107).

    Google Scholar 

  • Yoon, H.-S., Yoo, J.-Y., Kim, J.-H., Lee, J.-W., Byun, M.-W., Baik, B.-K., & Lim, S.-T. (2010). In vitro digestibility of gamma irradiated corn starches. Carbohydrate Polymers, 81, 961–963.

    Article  CAS  Google Scholar 

  • Zhai, M. L., Yoshii, F., Kume, T., & Hashim, K. (2002). Synthesis of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers, 50, 295–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habib, M., Jan, K., Qureshi, I., Rani, S., Bashir, K. (2023). Gamma Irradiation of Starch. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_16

Download citation

Publish with us

Policies and ethics