Skip to main content

Drug Delivery Systems for Tissue Engineering

  • Chapter
  • First Online:
Biomaterials and Tissue Engineering

Abstract

Drug delivery systems (DDSs) are developed having in view the need to control the dose (within the therapeutic level) and the time of administration of different biologically active agents being known that higher concentration of the therapeutic agent could be toxic while the lower concentration could be inefficient. These systems can be developed for pure regeneration of the injured bone, skin, nerves, etc. but also for the the treatment of specific diseases such as infections, cancers, osteoporosis, and more. Depending on the applications, various biologically active agents (both natural or synthetic agents) but also supports are used to better address the needs of the patients. As supports, polymers, ceramics and composites were especially considered for highlighting the benefits of these DDSs. Moreover, based on the advances in the last decades, many smart drug delivery systems were developed and additional features were developed such as triggering and targeted delivery, which permits further lowering the dose of the therapeutic agent and ensures the drug delivery to the right organ or tissue, eliminating or at least considerably reducing the systemic side effects. All these features are assuring the premises of “personalized therapy” which are especially important when toxic agents are used (such as chemotherapeutic or antimicrobial agents). The chapter is structured to cover the history of the drug delivery systems (including devices), some information about the smart drug delivery systems as well as some case studies related to enhanced healing, innovative therapies and the treatment of specific diseases. Based on the major conclusions, some of the perspectives are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas Z, Rehman S (2018) An overview of cancer treatment modalities. In: Neoplasm. IntechOpen, pp 139–157

    Google Scholar 

  2. Abdel-Bary AS, Tolan DA, Nassar MY, Taketsugu T, El-Nahas AM (2020) Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int J Biol Macromol 154:621–633

    Article  CAS  PubMed  Google Scholar 

  3. Absalan F, Sadjadi MS, Farhadyar N, Sadr MH (2022) Bone tissue engineering of HA/COL/GO porous nanocomposites with the ability to release naproxen: synthesis, characterization, and in vitro study. J Inorg Organomet Polym Mater 32(9):3260–3275

    Article  CAS  Google Scholar 

  4. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Article  CAS  PubMed  Google Scholar 

  5. Akram Z, Daood U, Aati S, Ngo H, Fawzy AS (2021) Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Mater Sci Eng C-Mater Biol Appl 122

    Google Scholar 

  6. Ananth, K. P., Sun, J., & Bai, J. (2018). An Innovative Approach to Manganese-Substituted Hydroxyapatite Coating on Zinc Oxide(-)Coated 316L SS for Implant Application. Int J Mol Sci, 19(8).

    Google Scholar 

  7. Andronescu E, Ficai A, Georgiana M, Mitran V, Sonmez M, Ficai D, Ion R, Cimpean A (2013) Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technol Cancer Res Treat 12(4):275–284

    Article  CAS  PubMed  Google Scholar 

  8. Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A (2010) Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J Mater Sci Mater Med 21(7):2237–2242

    Article  CAS  PubMed  Google Scholar 

  9. Andronescu E, Voicu G, Ficai M, Mohora IA, Trusca R, Ficai A (2011) Collagen/hydroxyapatite composite materials with desired ceramic properties. J Electron Microsc 60(3):253–259

    Article  CAS  Google Scholar 

  10. Anirudhan TS, Suriya R, Anoop SN (2022) Polymeric micelle/nano hydrogel composite matrix as a novel multi-drug carrier. J Mol Struct 1264

    Google Scholar 

  11. Ardelean IL, Gudovan D, Ficai D, Ficai A, Andronescu E, Albu-Kaya MG, Neacsu P, Ion RN, Cimpean A, Mitran V (2018) Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing. Mater Lett 231:179–182

    Article  CAS  Google Scholar 

  12. Auregan JC, Begue T (2015) Bioactive glass for long bone infection: a systematic review. Injury-Int J Care Injured 46:S3–S7

    Article  Google Scholar 

  13. Babavalian H, Latifi AM, Shokrgozar MA, Bonakdar S, Mohammadi S, Moghaddam MM (2015) Analysis of healing effect of alginate sulfate hydrogel dressing containing antimicrobial peptide on wound infection caused by methicillin-resistant staphylococcus aureus. Jundishapur J Microbiol 8 (9)

    Google Scholar 

  14. Baniahmad F, Yousefi S, Rabiee M, Shafieil SS, Faghihi S (2021) Alendronate sodium intercalation in layered double hydroxide/poly (epsilon-caprolactone): application in osteoporosis treatment. Iran J Biotechnol 19(1):48–59

    Google Scholar 

  15. Bjorn C, Noppa L, Salomonsson EN, Johansson AL, Nilsson E, Mahlapuu M, Hakansson J (2015) Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int J Antimicrob Agents 45(5):519–524

    Article  PubMed  Google Scholar 

  16. Bordone M, Bettencourt A (2023) Management of bone diseases: looking at scaffold-based strategies for drug delivery. Drug Deliv Transl Res 13(1):79–104

    Article  PubMed  Google Scholar 

  17. Boulila S, Oudadesse H, Badraoui R, Lefeuvre B, Mabrouk M, Chaabouni K, Mostafa A, Makni-Ayedi F, Barroug A, Rebai T, Elfeki A, Elfeki H (2017) Antioxidative/oxidative effects and retarding osteoconductivity of ciprofloxacin-loaded porous polyvinyl alcohol/bioactive glass hybrid. Med Biol Eng Compu 55(1):17–32

    Article  Google Scholar 

  18. Boulila S, Oudadesse H, Kallel R, Lefeuvre B, Mabrouk M, Chaabouni K, Makni-Ayedi F, Boudawara T, Elfeki A, Elfeki H (2017) In vivo study of hybrid biomaterial scaffold bioactive glass-chitosan after incorporation of ciprofloxacin. Polym Bull 74(10):4153–4173

    Article  CAS  Google Scholar 

  19. Burdusel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A (2022) Inorganic nanoparticles in bone healing applications. Pharmaceutics 14(4)

    Google Scholar 

  20. Burlet N, Reginster JY (2006) Strontium ranelate—the first dual acting treatment for postmenopausal osteoporosis. Clin Orthopaedics Related Res 443:55–60

    Article  Google Scholar 

  21. Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MIA, Beaula WS, Mythili R, Venkatraman G, Kalkura SN (2012) Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces 4(3):1200–1210

    Article  PubMed  Google Scholar 

  22. Chau Y, Padera RF, Dang NM, Langer R (2006) Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models. Int J Cancer 118(6):1519–1526

    Article  CAS  PubMed  Google Scholar 

  23. Chen D, Milacic V, Frezza M, Dou QP (2009) Metal complexes, their cellular targets and potential for cancer therapy. Curr Pharm Des 15(7):777–791

    Article  CAS  PubMed  Google Scholar 

  24. Chen JX, Ashames A, Buabeid MA, Fahelelbom KM, Ijaz M, Murtaza G (2020) Nanocomposites drug delivery systems for the healing of bone fractures. Int J Pharm 585

    Google Scholar 

  25. Coraca-Huber DC, Steixner SJM, Najman S, Stojanovic S, Finze R, Rimashevskiy D, Saginova D, Barbeck M, Schnettler R (2022) Lyophilized human bone allograft as an antibiotic carrier: an in vitro and in vivo study. Antibiotics-Basel 11(7)

    Google Scholar 

  26. Croitoru AM, Karacelebi Y, Saatcioglu E, Altan E, Ulag S, Aydogan HK, Sahin A, Motelica L, Oprea O, Tihauan BM, Popescu RC, Savu D, Trusca R, Ficai D, Gunduz O, Ficai A (2021) Electrically triggered drug delivery from novel electrospun poly(lactic acid)/graphene oxide/quercetin fibrous scaffolds for wound dressing applications. Pharmaceutics 13(7)

    Google Scholar 

  27. Deng KH, Liu ZX, Dou WXF, Cai Q, Ma W, Wang SH (2022) HA/beta-TCP biphasic calcium phosphate ceramics derived from butterfish bones loaded with bone marrow mesenchymal stem cells promote osteogenesis. Frontiers Mater 9

    Google Scholar 

  28. DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  29. Drug Delivery in Oncology From Basic Research to Cancer Therapy (2012) Wiley-VCH

    Google Scholar 

  30. Dumitru CD, Neacsu IA, Grumezescu AM, Andronescu E (2022) Bee-derived products: chemical composition and applications in skin tissue engineering. Pharmaceutics 14(4)

    Google Scholar 

  31. El Bialy I, Jiskoot W, Nejadnik MR (2017) Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res 34(6):1152–1170

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ewald A, Hosel D, Patel S, Grover LM, Barralet JE, Gbureck U (2011) Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater 7(11):4064–4070

    Article  CAS  PubMed  Google Scholar 

  33. Fan C, Xu Q, Hao RQ, Wang C, Que YM, Chen YX, Yang C, Chang J (2022) Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 287. 1016/j.biomaterials.2022.121652

    Google Scholar 

  34. Ficai A, Albu MG, Birsan M, Sonmez M, Ficai D, Trandafir V, Andronescu E (2013) Collagen hydrolysate based collagen/hydroxyapatite composite materials. J Mol Struct 1037:154–159

    Article  CAS  Google Scholar 

  35. Ficai A, Andronescu E, Ficai D, Sonmez M, Albu MG, Voicu G (2012) Mimicking the morphology of long bone. Cent Eur J Chem 10(6):1949–1953

    CAS  Google Scholar 

  36. Ficai A, Andronescu E, Trandafir V, Ghitulica C, Voicu G (2010) Collagen/hydroxyapatite composite obtained by electric field orientation. Mater Lett 64(4):541–544

    Article  CAS  Google Scholar 

  37. Ficai A, Andronescu E, Voicu G, Ghitulica C, Vasile BS, Ficai D, Trandafir V (2010) Self-assembled collagen/hydroxyapatite composite materials. Chem Eng J 160(2):794–800

    Article  CAS  Google Scholar 

  38. Ficai A, Andronescu E, Voicu G, Manzu D, Ficai M (2009) Layer by layer deposition of hydroxyapatite onto the collagen matrix. Mater Sci Eng C-Mater Biol Appl 29(7):2217–2220

    Article  CAS  Google Scholar 

  39. Ficai D, Sonmez M, Albu MG, Mihaiescu DE, Ficai A, Bleotu C (2015) Antitumoral materials with regenerative function obtained using a layer-by-layer technique. Drug Des Dev Ther 9:1269–1279

    Article  CAS  Google Scholar 

  40. Ficai M, Andronescu E, Ficai D, Voicu G, Ficai A (2010) Synthesis and characterization of COLL-PVA/HA hybrid materials with stratified morphology. Colloids Surf B-Biointerfaces 81(2):614–619

    Article  CAS  PubMed  Google Scholar 

  41. Foss FM (2000) DAB(389)IL-2 (denileukin diftitox, ONTAK): a new fusion protein technology. Clin Lymphoma 1:S27–S31

    Article  PubMed  Google Scholar 

  42. Gherasim O, Grumezescu AM, Grumezescu V, Negut I, Dumitrescu MF, Stan MS, Nica IC, Holban AM, Socol G, Andronescu E (2021) Bioactive coatings based on hydroxyapatite, kanamycin, and growth factor for biofilm modulation [Article]. Antibiotics 10(2):1–19, Article 160

    Google Scholar 

  43. Ghica MV, Ficai A, Marin S, Marin M, Ene AM, Patrascu JM (2015) Collagen/bioactive glass ceramic/doxycycline composites for bone defects. Revista Romana De Materiale-Romanian J Mater 45(4):307–314

    Google Scholar 

  44. Golchin A, Hosseinzadeh S, Staji M, Soleimani M, Ardeshirylajimi A, Khojasteh A (2019) Biological behavior of the curcumin incorporated chitosan/poly(vinyl alcohol) nanofibers for biomedical applications. J Cell Biochem 120(9):15410–15421

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Cerezo N, Casarrubios L, Saiz-Pardo M, Ortega L, de Pablo D, Diaz-Guemes I, Fernandez-Tome B, Enciso S, Sanchez-Margallo FM, Portoles MT, Arcos D, Vallet-Regi M (2019) Mesoporous bioactive glass/epsilon-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep. Acta Biomater 90:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ (2006) Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17(8):1263–1268

    Article  CAS  PubMed  Google Scholar 

  47. Guo JL, Zhang Q, Li J, Llu YS, Hou ZY, Chen W, Jin L, Tian Y, Ju LL, Liu B, Dong TH, Zhang F, Zhang YZ (2017) Local application of an ibandronate/collagen sponge improves femoral fracture healing in ovariectomized rats. Plos One 12(11)

    Google Scholar 

  48. Guo R, Lan Y, Xue W, Cheng BA, Zhang YM, Wang CY, Ramakrishna S (2017) Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J Tissue Eng Regen Med 11(12):3544–3555

    Article  CAS  PubMed  Google Scholar 

  49. Guo YY, Liu YW, Shi C, Wu TT, Cui YZ, Wang SY, Liu P, Feng XB, He Y, Fu DH (2021) Remote-controllable bone-targeted delivery of estradiol for the treatment of ovariectomy-induced osteoporosis in rats. J Nanobiotechnology 19(1)

    Google Scholar 

  50. Halazun JF, Wagner HR, Gaeta JF, Sinks LF (1974) Daunorubicin cardiac toxicity in children with acute lymphocytic leukemia. Cancer 33(2):545–554

    Article  CAS  PubMed  Google Scholar 

  51. Harmankaya N, Karlsson J, Palmquist A, Halvarsson M, Igawa K, Andersson M, Tengvall P (2013) Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone. Acta Biomater 9(6):7064–7073

    Article  CAS  PubMed  Google Scholar 

  52. He WC, Wu Z, Wu YM, Cai YY, Cui Z, Yu B, Hong YL (2021) Construction of antimicrobial material-loaded porous tricalcium phosphate beads for treatment of bone infections. ACS Appl Bio Mater 4(8):6280–6293

    Article  CAS  PubMed  Google Scholar 

  53. Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A, Milesi V (2009) Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J 97(7):1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Homaeigohar S, Li M, Boccaccini AR (2022) Bioactive glass-based fibrous wound dressings. Burns Trauma 10

    Google Scholar 

  55. Hong MH, Lee JH, Jung HS, Shin H, Shin H (2022) Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater Res 26(1)

    Google Scholar 

  56. Huang Y, Chen JR, Lin J, Lin JH, Chen XW (2021) Preparation of vanillic acid-loaded core-shell gold nanospheres/mesoporous silica nanoparticles for the treatment of orthopedic infection. ACS Omega 6(4):2899–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ilie A, Andronescu E, Ficai D, Voicu G, Ficai M, Maganu M, Ficai A (2011) New approaches in layer by layer synthesis of collagen/hydroxyapatite composite materials. Cent Eur J Chem 9(2):283–289

    CAS  Google Scholar 

  58. Iliescu RI, Andronescu E, Ghitulica CD, Voicu G, Ficai A, Hoteteu M (2014) Montmorillonite-alginate nanocomposite as a drug delivery system incorporation and in vitro release of irinotecan. Int J Pharm 463(2):184–192

    Article  CAS  PubMed  Google Scholar 

  59. Ionescu O, Ciocilteu MV, Manda CV, Neacsu IA, Ficai A, Amzoiu E, Stiolica AT, Croitoru O, Neamtu J (2019) Bone—graft delivery systems of type PLGA-gentamicin and collagen—hydroxyapatite—gentamicine. Materiale Plastice 56(3):534–537

    Article  Google Scholar 

  60. Jain K (2010) Advances in the field of nanooncology. BMC Med 83(8):1–11

    Google Scholar 

  61. Jebahi S, Saoudi M, Farhat L, Oudadesse H, Rebai T, Kabir A, El Feki A, Keskes H (2015) Effect of novel curcumin-encapsulated chitosan-bioglass drug on bone and skin repair after gamma radiation: experimental study on a Wistar rat model. Cell Biochem Funct 33(3):150–159

    Article  CAS  PubMed  Google Scholar 

  62. Jiang T, Li QY, Qiu JM, Chen J, Du S, Xu X, Wu ZH, Yang XF, Chen ZB, Chen TK (2022) Nanobiotechnology: applications in chronic wound healing. Int J Nanomed 17:3125–3145

    Article  Google Scholar 

  63. Jimenez-Holguin J, Sanchez-Salcedo S, Cicuendez M, Vallet-Regi M, Salinas AJ (2022) Cu-doped hollow bioactive glass nanoparticles for bone infection treatment. Pharmaceutics 14(4)

    Google Scholar 

  64. Kanade R, Boche M, Pokharkar V (2018) Self-assembling raloxifene loaded mixed micelles: formulation optimization, in vitro cytotoxicity and in vivo pharmacokinetics. AAPS PharmSciTech 19(3):1105–1115

    Article  CAS  PubMed  Google Scholar 

  65. Kar S, Kundu B, Reis RL, Sarkar R, Nandy P, Basu R, Das S (2019) Curcumin ameliorates the targeted delivery of methotrexate intercalated montmorillonite clay to cancer cells. Eur J Pharm Sci 135:91–102

    Article  CAS  PubMed  Google Scholar 

  66. Kargozar S, Montazerian M, Harnzehlou S, Kim HW, Baino F (2018) Mesoporous bioactive glasses: promising platforms for antibacterial strategies. Acta Biomater 81:1–19

    Article  CAS  PubMed  Google Scholar 

  67. Kotak DJ, Devarajan PV (2020) Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomed-Nanotechnol Biol Med 24

    Google Scholar 

  68. Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C Mater Biol Appl 58:648–658

    Article  CAS  PubMed  Google Scholar 

  69. Kumar GS, Govindan R, Girija EK (2014) In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J Mater Chem B 2(31):5052–5060

    Article  CAS  PubMed  Google Scholar 

  70. Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Bin Choy Y (2017) Application of materials as medical devices with localized drug delivery capabilities for enhanced wound repair. Prog Mater Sci 89:392–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li HB, Jiang F, Ye S, Wu YY, Zhu KP, Wang DP (2016) Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. Mater Sci Eng C-Mater Biol Appl 62:779–786

    Article  PubMed  Google Scholar 

  72. Liu YP, Yu P, Peng X, Huang Q, Ding MM, Chen YT, Jin RT, Xie J, Zhao CS, Li JS (2019) Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. J Control Release 304:39–50

    Article  CAS  PubMed  Google Scholar 

  73. Low SK, Nakamura Y (2019) The road map of cancer precision medicine with the innovation of advanced cancer detection technology and personalized immunotherapy. Jpn J Clin Oncol 49(7):596–603

    Article  PubMed  Google Scholar 

  74. Marques C, Ferreira JMF, Andronescu E, Ficai D, Sonmez M, Ficai A (2014) Multifunctional materials for bone cancer treatment. Int J Nanomed 9:2713–2725

    Google Scholar 

  75. Marques CF, Lemos A, Vieira SI, Silva OABDE, Bettencourt A, Ferreira JMF (2016) Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts. Ceram Int 42(2):2706–2716

    Article  CAS  Google Scholar 

  76. Martins VCA, Goissis G (2000) Nonstoichiometric hydroxyapatite-anionic collagen composite as support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin. Artif Organs 24(3):224–230

    Article  CAS  Google Scholar 

  77. Mehtani D, Seth A, Sharma P, Maheshwari N, Kapoor D, Shrivastava SK, Tekade RK (2019) Biomaterials for sustained and controlled delivery of small drug molecules. In: Tekade RK (ed) Biomaterials and bionanotechnology. Academic Press, pp 90–153

    Google Scholar 

  78. Mirzaei B, Etemadian S, Goli HR, Bahonar S, Gholami SA, Karami P, Farhadi M, Tavakoli R (2018) Construction and analysis of alginate-based honey hydrogel as an ointment to heal of rat burn wound related infections. Int J Burns Trauma 8(4):88–97

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mostafa AA, El-Sayed MMH, Mahmoud AA, Gamal-Eldeen AM (2017) Bioactive/natural polymeric scaffolds loaded with ciprofloxacin for treatment of osteomyelitis. AAPS PharmSciTech 18(4):1056–1069

    Article  CAS  PubMed  Google Scholar 

  80. Mulazzi M, Campodoni E, Bassi G, Montesi M, Panseri S, Bonvicini F, Gentilomi GA, Tampieri A, Sandri M (2021) Medicated hydroxyapatite/collagen hybrid scaffolds for bone regeneration and local antimicrobial therapy to prevent bone infections. Pharmaceutics 13(7)

    Google Scholar 

  81. Munir MU, Salman S, Javed I, Bukhari SNA, Ahmad N, Shad NA, Aziz F (2021) Nano-hydroxyapatite as a delivery system: overview and advancements. Artificial Cells Nanomed Biotechnol 49(1):717–727

    Article  CAS  Google Scholar 

  82. Nadar RA, Asokan N, Degli Esposti L, Curci A, Barbanente A, Schlatt L, Karst U, Iafisco M, Margiotta N, Brand M, van den Beucken JJJP, Bornhauser M, Leeuwenburg SCG (2020) Preclinical evaluation of platinum-loaded hydroxyapatite nanoparticles in an embryonic zebrafish xenograft model. Nanoscale 12(25):13582–13594

    Article  CAS  PubMed  Google Scholar 

  83. Nandi A, Ghosh C, Basu S (2019) Polymer conjugated graphene-oxide nanoparticles impair nuclear DNA and topoisomerase I in cancer. Nanoscale Adv 1(12):4965–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neacsu IA, Arsenie LV, Trusca R, Ardelean IL, Mihailescu N, Mihailescu IN, Ristoscu C, Bleotu C, Ficai A, Andronescu E (2019) Biomimetic collagen/Zn2+-substituted calcium phosphate composite coatings on titanium substrates as prospective bioactive layer for implants: a comparative study spin coating vs. MAPLE. Nanomaterials 9(5)

    Google Scholar 

  85. Nedelcu IA, Ficai A, Sonmez M, Ficai D, Oprea O, Andronescu E (2014) Silver based materials for biomedical applications. Curr Org Chem 18(2):173–184

    Article  CAS  Google Scholar 

  86. Neto AS, Pereira P, Fonseca AC, Dias C, Almeida MC, Barros I, Miranda CO, de Almeida LP, Morais PV, Coelho JFJ, Ferreira JMF (2021) Highly porous composite scaffolds endowed with antibacterial activity for multifunctional grafts in bone repair. Polymers 13(24)

    Google Scholar 

  87. Ni T, Zhu YM, Hao L, Chen Y, Cheng T (2022) Preparation of photothermal-sensitive PDGF@ZIF-8-PDA@COL/PLGA-TCP composite scaffolds for bone defect repair. Mater Des 217

    Google Scholar 

  88. Ning ZY, Tan BY, Chen B, Lau DSA, Wong TM, Sun TH, Peng SL, Li ZY, Lu WW (2019) Precisely controlled delivery of abaloparatide through injectable hydrogel to promote bone regeneration. Macromol Biosci 19(6)

    Google Scholar 

  89. O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10:20–29

    Article  PubMed  Google Scholar 

  90. Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, Saparov A (2020) Progress and prospects of polymer-based drug delivery systems for bone tissue regeneration. Polymers 12(12)

    Google Scholar 

  91. Oprea O, Andronescu E, Ficai D, Ficai A, Oktar FN, Yetmez M (2014) ZnO applications and challenges. Curr Org Chem 18(2):192–203

    Article  CAS  Google Scholar 

  92. Ozbek M, Domack U, Barnikol WKR (1999) A model for evaluation of artificial oxygen carriers regarding circulation, respiration and metabolism in anesthetized spontaneously breathing guinea pigs. Oxygen Transport Tissue Xxi 471:17–26

    Article  CAS  Google Scholar 

  93. Pan YX, Wang JH, Jiang ZC, Guo Q, Zhang Z, Li JY, Hu YH, Wang L (2022) Zoledronate combined metal-organic frameworks for bone-targeting and drugs deliveries. Sci Rep 12(1)

    Google Scholar 

  94. Patel PR, Singam A, Iyer AK, Gundloori RVN (2022) Bioinspired hyaluronic acid based nanofibers immobilized with 3, 4-difluorobenzylidene curcumin for treating bacterial infections. J Drug Delivery Sci Technol 74

    Google Scholar 

  95. Pishbin F, Mourino V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6(11):8796–8806

    Article  CAS  PubMed  Google Scholar 

  96. Poorirani S, Taheri SL, Mostafavi SA (2022) Scaffolds: a biomaterial engineering in targeted drug delivery for osteoporosis. Osteoporosis Int

    Google Scholar 

  97. Pupo YM, Leite LMB, Senegaglia AC, Antunes L, Nadal JM, de Lara EL, Saito RE, Antunes SRM, Lacerda WF, Farago PV (2021) Effect of hydroxyapatite microspheres, amoxicillin-hydroxyapatite and collagen-hydroxyapatite composites on human dental pulp-derived mesenchymal stem cells. Materials 14(24)

    Google Scholar 

  98. Ramburrun P, Kumar P, Ndobe E, Choonara YE (2021) Gellan-Xanthan hydrogel conduits with intraluminal electrospun nanofibers as physical, chemical and therapeutic cues for peripheral nerve repair. Int J Mol Sci 22(21)

    Google Scholar 

  99. Rana D, Salave S, Jain S, Shah R, Benival D (2022) Systematic development and optimization of teriparatide-loaded nanoliposomes employing quality by design approach for osteoporosis. J Pharm Innovation

    Google Scholar 

  100. Ribeiro DML, Carvalho AR, de Macedo GHRV, Chagas VL, Silva LD, Cutrim BD, Santos DM, Soares BLL, Zagmignan A, de Miranda RDM, de Albuquerque PBS, da Silva LCN (2020) Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules 10(1)

    Google Scholar 

  101. Rodriguez I, Fernandez-Vega L, Maser-Figueroa AN, Sang BL, Gonzalez-Pagan P, Tinoco AD (2022) Exploring titanium(IV) complexes as potential antimicrobial compounds. Antibiotics-Basel 11(2)

    Google Scholar 

  102. Rusu LC, Nedelcu IA, Albu MG, Sonmez M, voicu g, radulescu m, ficai d, ficai a, negrutiu ml, sinescu c (2015) tetracycline loaded collagen/hydroxyapatite composite materials for biomedical applications. J Nanomater 2015

    Google Scholar 

  103. Saha R, Tayalia P (2022) Clove oil-incorporated antibacterial gelatin-chitosan cryogels for tissue engineering: an in vitro study. ACS Biomater Sci Eng 8(8):3557–3567

    Article  CAS  PubMed  Google Scholar 

  104. Saini D, Fazil M, Ali MM, Baboota S, Ameeduzzafar AJ (2015) Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Delivery 22(6):823–836

    Article  CAS  PubMed  Google Scholar 

  105. Salamanna F, Gambardella A, Contartese D, Visani A, Fini M (2021) Nano-based biomaterials as drug delivery systems against osteoporosis: a systematic review of preclinical and clinical evidence. Nanomaterials 11(2)

    Google Scholar 

  106. Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM (2022) Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 28(17):1419–1432

    Article  CAS  PubMed  Google Scholar 

  107. Sandomierski M, Jakubowski M, Ratajczak M, Voelkel A (2022) Drug distribution evaluation using FT-IR imaging on the surface of a titanium alloy coated with zinc titanate with potential application in the release of drugs for osteoporosis. Spectrochimica Acta Part a-Mol Biomol Spectroscopy 281

    Google Scholar 

  108. Satar NA, Ismail MN, Yahaya BH (2021) Synergistic roles of curcumin in sensitising the cisplatin effect on a cancer stem cell-like population derived from non-small cell lung cancer cell lines. Molecules 26(4)

    Google Scholar 

  109. Shaabani E, Sharifiaghdam M, Lammens J, De Keersmaecker H, Vervaet C, De Beer T, Motevaseli E, Ghahremani MH, Mansouri P, Smedt SD, Raemdonck K, Faridi-Majidi R, Braeckmans K, Fraire JC (2021) Increasing angiogenesis factors in hypoxic diabetic wound conditions by siRNA delivery: additive effect of LbL-gold nanocarriers and desloratadine-induced lysosomal escape. Int J Mol Sci 22(17)

    Google Scholar 

  110. Sharaf SS, El-Shafei AM, Refaie R, Gibriel AA, Abdel-Sattar R (2022) Antibacterial and wound healing properties of cellulose acetate electrospun nanofibers loaded with bioactive glass nanoparticles; in-vivo study. Cellulose 29(8):4565–4577

    Article  Google Scholar 

  111. Sheikh L, Sinha S, Singhababu YN, Verma V, Tripathy S, Nayar S (2018) Traversing the profile of biomimetically nanoengineered iron substituted hydroxyapatite: synthesis, characterization, property evaluation, and drug release modeling. RSC Adv 8(35):19389–19401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sim J, Kang G, Yang H, Jang M, Kim Y, Ahn H, Kim M, Jung H (2022) Development of clinical weekly-dose teriparatide acetate encapsulated dissolving microneedle patch for efficient treatment of osteoporosis. Polymers 14(19)

    Google Scholar 

  113. Song W, Musetti SN, Huang L (2017) Nanomaterials for cancer immunotherapy. Biomaterials 148:16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Spoiala A, Ilie CI, Ficai D, Ficai A, Andronescu E (2021) Chitosan-based nanocomposite polymeric membranes for water purification-a review. Materials 14(9)

    Google Scholar 

  115. Sun HN, Liu SS, Zeng XF, Meng XG, Zhao LN, Wan YZ, Zuo GF (2017) Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate. J Mater Sci-Mater Med 28(10)

    Google Scholar 

  116. Sun Q, Duan MT, Fan W, Fan B (2021) Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: an in vitro and in vivo study. J Mater Chem B 9(9)

    Google Scholar 

  117. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  118. Svarca A, Grava A, Dubnika A, Ramata-Stunda A, Narnickis R, Aunina K, Rieksta E, Boroduskis M, Jurgelane I, Locs J, Loca D (2022) Calcium phosphate/hyaluronic acid composite hydrogels for local antiosteoporotic drug delivery. Frontiers Bioeng Biotechnol 10

    Google Scholar 

  119. Szewczyk A, Skwira A, Konopacka A, Sadej R, Prokopowicz M (2021) Mesoporous silica-bioglass composite pellets as bone drug delivery system with mineralization potential. Int J Mol Sci 22(9)

    Google Scholar 

  120. Szurkowska K, Kazimierczak P, Kolmas J (2021) Mg,Si-Co-substituted hydroxyapatite/alginate composite beads loaded with raloxifene for potential use in bone tissue regeneration. Int J Mol Sci 22(6)

    Google Scholar 

  121. Taye MB (2022) Biomedical applications of ion-doped bioactive glass: a review. Appl Nanosci 12(12):3797–3812

    Article  CAS  Google Scholar 

  122. Teodor ED, Gatea F, Ficai A, Radu GL (2018) Functionalized magnetic nanostructures for anticancer therapy. Curr Drug Targets 19(3):239–247

    Article  CAS  PubMed  Google Scholar 

  123. Tian R, Qin XY, Yuan PY, Lei K, Wang L, Bai YK, Liu SY, Chen X (2018) Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration. ACS Appl Mater Interfaces 10(20):17018–17027

    Article  CAS  PubMed  Google Scholar 

  124. Tiplea RE, Lemnaru GM, Trusca RD, Holban A, Kaya MGA, Dragu LD, Ficai D, Ficai A, Bleotu C (2021) Antimicrobial films based on chitosan, collagen, and ZnO for skin tissue regeneration. Biointerface Res Appl Chem 11(4):11985–11995

    CAS  Google Scholar 

  125. Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE (2018) Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 11(11)

    Google Scholar 

  126. Torky HA, Khaliel SA, Sedeek EK, Tawfik RG, Bkheet AAE, Ebied SK, Amin HS, Zahran SI, Emara HA, Nofal AM, Elghazaly EM (2022) Silver nanoparticle effect on Salmonella enterica isolated from northern west egypt food, poultry, and calves. Appl Microbiol Biotechnol 106(17):5701–5713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsimberidou AM (2015) Targeted therapy in cancer. Cancer Chemother Pharmacol 76(6):1113–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Kumar J (2011) Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. 3 Biotech 1(3):173–186

    Google Scholar 

  129. Vose JM (2004) Bexxar®: novel radioimmunotherapy for the treatment of low-grade and transformed low-grade non-Hodgkin’s lymphoma. Oncologist 9(2):160–172

    Article  CAS  PubMed  Google Scholar 

  130. Vu AA, Kushram P, Bose S (2022) Effects of vitamin A (Retinol) release from calcium phosphate matrices and porous 3D printed scaffolds on bone cell proliferation and maturation. ACS Appl Bio Mater 5(3):1120–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang SL, Pang Y, Hu SY, Lv J, Lin YL, Li M (2023) Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer. Chem Eng J 451. https://doi.org/10.1016/j.cej.2022.138864

  132. Wang XY, Li YF, Ren WJ, Hou RX, Liu HF, Li R, Du SJ, Wang L, Liu JY (2021) PEI-modified diatomite/chitosan composites as bone tissue engineering scaffold for sustained release of BMP-2. J Biomater Sci-Polym Edn 32(10):1337–1355

    Article  CAS  Google Scholar 

  133. Wang Z, Hou S, Yao SY, Shang YL, Deng S, Peng Y, Zhou WW, Lv XF, Ren B, Peng C, Yang J, Huang ZH (2022) Osteogenesis of aspirin microsphere-loaded tilapia collagen/hydroxyapatite biomimetic scaffolds. J Mater Sci 57(25):11882–11898

    Article  CAS  Google Scholar 

  134. Wang ZH, Li Y (2018) Raloxifene/SBE-beta-CD inclusion complexes formulated into nanoparticles with chitosan to overcome the absorption barrier for bioavailability enhancement. Pharmaceutics 10(3)

    Google Scholar 

  135. Wu C, Liu J, Zhai ZR, Yang LQ, Tang X, Zhao LZ, Xu KM, Zhong WY (2020) Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomater 106:278–288

    Article  CAS  PubMed  Google Scholar 

  136. Wu K, Chen YC, Lin SM, Chang CH (2021) In vitro and in vivo effectiveness of a novel injectable calcitonin-loaded collagen/ceramic bone substitute. J Biomater Appl 35(10):1355–1365

    Article  CAS  PubMed  Google Scholar 

  137. Xia YD, Wang DX, Liu D, Su JY, Jin Y, Wang D, Han BB, Jiang ZP, Liu B (2022) Applications of chitosan and its derivatives in skin and soft tissue diseases. Frontiers Bioeng Biotechnol 10

    Google Scholar 

  138. Xiao TH, Fan L, Liu RT, Huang XW, Wang SH, Xiao LG, Pang YY, Li D, Liu J, Min YG (2021) Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for promoting bone regeneration. ACS Appl Mater Interfaces 13(43):50836–50850

    Article  CAS  PubMed  Google Scholar 

  139. Xu J, Zheng SS, Hu XY, Li LY, Li WF, Parungao R, Wang YW, Nie Y, Liu TQ, Song KD (2020) Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers 12(6)

    Google Scholar 

  140. Youness RA, El-deen DMT, Taha MA (2022) A review on calcium silicate ceramics: properties, limitations, and solutions for their use in biomedical applications. Silicon

    Google Scholar 

  141. Yu P, Chen Y, Wang Y, Liu Y, Zhang P, Guo Q, Li S, Xiao H, Xie J, Tan H, Li J (2019) Pentapeptide-decorated silica nanoparticles loading salmon calcitonin for in vivo osteoporosis treatment with sustained hypocalcemic effect. Mater Today Chem 14

    Google Scholar 

  142. Yu YS, Hsu CH, Cheng PH, Wu KCW, Liu CH (2022) Poly(acrylic acid)-grafted metal-organic framework carrying Mg ions for bone repair. Mater Chem Phys 292

    Google Scholar 

  143. Zeng YY, Shen YD, Wu SY, Cai L, Wang Z, Cai KX, Shen JT, Yie KHR, Zhang HL, Xu LH, Liu JS (2022) Bone-targeting PLGA derived lipid drug delivery system ameliorates bone loss in osteoporotic ovariectomized rats. Mater Des 221

    Google Scholar 

  144. Zhang W, Du XF, Ben L, Li CR, Long J, Zhao MX, Yao ZY, Liang XJ, Lai YX (2022) Engineering supramolecular nanomedicine for targeted near infrared-triggered mitochondrial dysfunction to potentiate cisplatin for efficient chemophototherapy. ACS Nano 16(1):1421–1435

    Article  CAS  PubMed  Google Scholar 

  145. Zhang XX, Chen HE, Zhang Y, Huang QJ, Feng JJ, Xing HY, Fu XG, Yan XF, Zhang YY, Xu Q, Liang JM (2022) HA-DOPE-modified honokiol-loaded liposomes targeted therapy for osteosarcoma. Int J Nanomed 17:5137–5151

    Article  CAS  Google Scholar 

  146. Zhang XX, Jiang XR, Jiang S, Cai XY, Yu SJ, Pei GX (2021) Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells. Stem Cell Res Therapy 12(1)

    Google Scholar 

  147. Zhao XY, Han Y, Zhu TT, Feng NB, Sun YF, Song ZM, Li SQ, Liu JG, Ding JX (2019) Electrospun polylactide-nano-hydroxyapatite-vancomycin composite scaffolds for advanced osteomyelitis therapy. J Biomed Nanotechnol 15(6):1213–1222

    Article  CAS  PubMed  Google Scholar 

  148. Zhong CL, Qin BY, Xie XY, Bai Y (2013) antioxidant and antimicrobial activity of tellurium dioxide nanoparticles sols. J Nano Res 25:8–15

    Article  CAS  Google Scholar 

  149. Zhong J, Wen WY, Wang JJ, Zhang MY, Jia YJ, Ma XW, Su YX, Wang YJ, Lan XM (2022) Bone-targeted dual functional lipid-coated drug delivery system for osteosarcoma therapy. Pharm Res

    Google Scholar 

  150. Zhou GD, Lin JX (2020) Graphene-based nanomaterials combined with early exercise rehabilitation training in the treatment of patients with infectious bone defects. Int J Nanotechnol 17(2–6):291–307

    Article  CAS  Google Scholar 

  151. Zhu J, Hou R, Liu M, Wang L, Chen W, Sun Y, Wei W, Ye S (2022) A novel wound dressing based on epigallocatechin-3-gallate self-assemble hydrogels promotes effects on wound healing. Mater Today Sustain 18

    Google Scholar 

  152. Zhu QY, Jiang M, Liu Q, Yan SN, Feng LB, Lan Y, Shan GQ, Xue W, Guo R (2018) Enhanced healing activity of burn wound infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater Sci 6(9):2472–2486

    Article  CAS  PubMed  Google Scholar 

  153. Zogakis PN, Teles AR, Zafeiris EP, Zafeiris CP (2022) Bisphosphonate-loaded bone cement: background, clinical indications and future perspectives. J Musculoskelet Neuronal Interact 22(4):587–595

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Ficai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tărăbuță, P.A., Motelica, L., Ficai, D., Oprea, O., Ficai, A., Andronescu, E. (2023). Drug Delivery Systems for Tissue Engineering. In: Gunduz, O., Egles, C., Pérez, R.A., Ficai, D., Ustundag, C.B. (eds) Biomaterials and Tissue Engineering. Stem Cell Biology and Regenerative Medicine, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-35832-6_7

Download citation

Publish with us

Policies and ethics