Skip to main content

Biomaterials

  • Chapter
  • First Online:
Biomaterials and Tissue Engineering

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 74))

  • 459 Accesses

Abstract

Even since antiquity, and thanks to their ingenuity, doctors have benefited from using natural materials “biomaterials” to substitute tissue, organs or other body parts. Over time, traditional and rudimentary biomaterials have been replaced with improved and targeted synthetic materials specially designed for specific applications. This chapter provides an overview of natural and synthetic biomaterials, used in developing innovative devices for tissue engineering applications, from polymers and ceramics to composite materials (metals were discussed in more details in Chap. 1). The first part of this chapter presents a comprehensive overview of the first biomaterials used in ancient medicine. This part highlights the essential role that primitive biomaterials brought in today’s medicine. In the second part, natural and synthetic biomaterials are very thoroughly presented. The main aspect of these biomaterials is related to their physicochemical and mechanical properties, which must be considered when featured for tissue engineering applications. The focus of the third part will significantly illustrate the interconnection and combination between medicine and scientific research to develop new platforms for tissue engineering applications. Over the past few decades, researchers and scientists have demonstrated considerable progress in developing novel biomaterials as substitutes for replacing and repairing diverse damaged tissues. Lastly, conclusions and future trends review the most important and complex aspects that tissue engineering provides in combing diverse materials to develop suitable substitutes to alleviate patients’ lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462(7272):426–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  CAS  PubMed  Google Scholar 

  3. Tathe A, Ghodke M, Nikalje AP (2010) A brief review biomaterials and their application. Int J Pharm Pharm Sci 2(4):19–23

    CAS  Google Scholar 

  4. Helmus MN, Gibbons DF, Cebon D (2008) Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol Pathol 36:70–80

    Article  CAS  PubMed  Google Scholar 

  5. Patel NR, Gohil PP (2012) A review on biomaterials: Scope, applications and human anatomy significance. Int J Emerg Technol Adv Eng 2(4):91–101

    Google Scholar 

  6. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2020) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, London

    Google Scholar 

  7. Namvar F, Jawaid M, Md Tahir P, Mohamad R, Azizi S, Khodavandi A, Rahman HS, Nayeri MD (2014) Potential use of plant fibres and their composites for biomedical applications. BioResources 9(3):5688–5706

    Article  Google Scholar 

  8. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  CAS  Google Scholar 

  9. Kutz M (2003) Standard handbook of biomedical engineering and design. In McGraw-Hill (ed)

    Google Scholar 

  10. Parida P, Behera A, Mishra SC (2012) Classification of biomaterials used in medicine. Int J Adv Appl Sci 1(3):125–129

    Google Scholar 

  11. Chen C, Xi Y, Weng Y (2022) Progress in the development of graphene-based biomaterials for tissue engineering and regeneration. Mater (Basel) 15(6)

    Google Scholar 

  12. Chong ETJ, Ng JW, Lee P-C (2022) Classification and medical applications of biomaterials—a mini review. BIO integration

    Google Scholar 

  13. Eldeeb AE, Salah S, Elkasabgy NA (2022) Biomaterials for tissue engineering applications and current updates in the field: a comprehensive review. AAPS PharmSciTech 23(7):267

    Article  PubMed  Google Scholar 

  14. Rubežić MZ, Krstić AB, Stanković HZ, Ljupković RB, Ranđelović MS, Zarubica AR (2020) Different types of biomaterials—structure and applications—a short review. Adv Technol 9(1):69–79

    Article  Google Scholar 

  15. Anil S, Chalisserry EP, Nam SY, Venkatesan J (2019) Biomaterials for craniofacial tissue engineering and regenerative dentistry. In: Advanced dental biomaterials, pp 643–674

    Google Scholar 

  16. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8(9):3191–3200

    Article  CAS  PubMed  Google Scholar 

  17. Abou Neel EA, Salih V, Revell PA, Young AM (2012) Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives. Acta Biomater 8(1):313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ardelean IL, Gudovan D, Ficai D, Ficai A, Andronescu E, Albu-Kaya MG, Neacsu P, Ion RN, Cimpean A, Mitran V (2018) Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing. Mater Lett 231:179–182

    Article  CAS  Google Scholar 

  19. Marques C, Ferreira JM, Andronescu E, Ficai D, Sonmez M, Ficai A (2014) Multifunctional materials for bone cancer treatment. Int J Nanomedicine 9:2713–2725

    PubMed  PubMed Central  Google Scholar 

  20. Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, De Meulenaer B, Mantovani D, Van Vlierberghe S, Dubruel P (2021) Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: a superior alternative to methacrylated gelatin? Mater Sci Eng C Mater Biol Appl 130:112460

    Article  CAS  PubMed  Google Scholar 

  21. Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 12:4937–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65(1):1–8

    Article  CAS  PubMed  Google Scholar 

  23. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6(4):1285–1309

    Article  CAS  PubMed  Google Scholar 

  24. Ribeiro VP, Pina S, Oliveira JM, Reis RL (25 April, 2018) Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration. In: Advanced experimental medicine biology (ed), vol 1058. Springer, Cham, pp 305–325

    Google Scholar 

  25. Aliramaji S, Zamanian A, Mozafari M (2017) Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 70(Pt 1):736–744

    Article  CAS  PubMed  Google Scholar 

  26. Li G, Sun S (2022) Silk fibroin-based biomaterials for tissue engineering applications. Molecules 27(9)

    Google Scholar 

  27. Yao X, Zou S, Fan S, Niu Q, Zhang Y (2022) Bioinspired silk fibroin materials: from silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio 16:100381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Ye S, Cao L, Lv Z, Ren J, Shao Z, Yao Y, Ling S (2022) Natural silk spinning-inspired meso-assembly-processing engineering strategy for fabricating soft tissue-mimicking biomaterials. Adv Func Mater 32(27):2200267

    Article  CAS  Google Scholar 

  29. Ganesh N, Hanna C, Nair SV, Nair LS (2013) Enzymatically cross-linked alginic–hyaluronic acid composite hydrogels as cell delivery vehicles. Int J Biol Macromol 55:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta 1832(7):866–875

    Article  CAS  PubMed  Google Scholar 

  31. Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M (2018) Agarose-based biomaterials for tissue engineering. Carbohydr Polym 187:66–84

    Article  CAS  PubMed  Google Scholar 

  32. Ressler A (22, 2022) Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers (Basel), 14(16)

    Google Scholar 

  33. Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B (2022) Applications of chitosan and its derivatives in skin and soft tissue diseases. Front Bioeng Biotechnol 10:894667

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Campbell Ritchie A, Everitt NM (2021) Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 121:111846

    Article  CAS  PubMed  Google Scholar 

  35. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104(Pt B):1372–1382

    Article  CAS  PubMed  Google Scholar 

  36. Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634

    Article  CAS  PubMed  Google Scholar 

  37. Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K (2007) Composition and hierarchical organisation of a spider silk. PLoS ONE 2(10):e998

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vollrath F, Barth P, Basedow A, Engström W, List H (2002) Local tolerance to spider silks and protein polymers in vivo. In vivo (Athens, Greece) 16(4):229–234

    CAS  PubMed  Google Scholar 

  39. Flores-Cano JV, Leyva-Ramos R, Mendoza-Barrón J, Guerrero-Coronado RM, Aragón-Piña A, Labrada-Delgado GJ (2013) Sorption mechanism of Cd(II) from water solution onto chicken eggshell. Appl Surf Sci 276:682–690

    Article  CAS  Google Scholar 

  40. Gergely G, Weber F, Lukacs I, Toth AL, Horvath ZE, Mihaly J, Balazsi C (2010) Preparation and characterization of hydroxyapatite from eggshell. Ceram Int 36(2):803–806

    Article  CAS  Google Scholar 

  41. Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM (2007) Removal of heavy metals using waste eggshell. J Environ Sci 19(12):1436–1441

    Article  CAS  Google Scholar 

  42. Ebaretonbofa E, Evans JRG (2002) High porosity hydroxyapatite foam scaffolds for bone substitute. J Porous Mater 9(4):257–263

    Article  CAS  Google Scholar 

  43. Xu Y, Wang DZ, Yang L, Tang HG (2001) Hydrothermal conversion of coral into hydroxyapatite. Mater Charact 47(2):83–87

    Article  CAS  Google Scholar 

  44. Dang W, Davlau T, Ylng P, Zhao Y, Nowotmk D, Clow CS, Tyler B, Brern H (1996) Effects of GLIADEL wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 42:89–92

    Article  Google Scholar 

  45. Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16(2):97–105

    Article  CAS  Google Scholar 

  46. Sodian R, Sperling JS, Martin DP, Egozy A, Stock U, Mayer JE, Vacanti JP (2000) Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng

    Google Scholar 

  47. Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78(1):199–209

    Article  CAS  PubMed  Google Scholar 

  48. Andronescu E, Nastase M, Ghitulica C, Stefan E (2002) Composite bioceramics. Euro Ceramics Vii, Pt 1–3(206–2):1591–1594

    Google Scholar 

  49. Balazsi C, Weber F, Kover Z, Horvath E, Nemeth C (2007) Preparation of calcium-phosphate bioceramics from natural resources. J Eur Ceram Soc 27(2–3):1601–1606

    Article  CAS  Google Scholar 

  50. Filip N, Radu I, Veliceasa B, Filip C, Pertea M, Clim A, Pinzariu AC, Drochioi IC, Hilitanu RL, Serban IL (2022) Biomaterials in orthopedic devices: current issues and future perspectives. Coatings 12(10)

    Google Scholar 

  51. Zhou YL, Wu CT, Chang J (2019) Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater Today 24:41–56

    Article  CAS  Google Scholar 

  52. Biomaterials (2019) National institutes of health, national institute of biomedical imaging and bioengineering

    Google Scholar 

  53. Elflein J (2021) Statistica—global number of organ transplantations 2019

    Google Scholar 

  54. Kosowska K, Domalik-Pyzik P, Sekula-Stryjewska M, Noga S, Jagiello J, Baran M, Lipinska L, Zuba-Surma E, Chlopek J (2020) Gradient chitosan hydrogels modified with graphene derivatives and hydroxyapatite: physiochemical properties and initial cytocompatibility evaluation. Int J Mol Sci 21(14)

    Google Scholar 

  55. Moizhess TG (2008) Carcinogenesis induced by foreign bodies. Biochem (Mosc) 73(7):763–775

    Article  CAS  Google Scholar 

  56. Ducheyne P, Qiu Q (1999) Bioactive ceramics—the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303

    Article  CAS  PubMed  Google Scholar 

  57. Hench LL (1998) Bioceramics. J Am Ceram Soc 8:1705–1728

    Google Scholar 

  58. Seala BL, Oterob TC, Panitcha A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R 34:147–230

    Article  Google Scholar 

  59. LeVeen HH, Rarberio JR (1949) Tissue reaction to plastics used in surgery with special reference to teflon. Ann Surg 129:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hench LL (1988) Bioactive ceramics. Ann NY Acad Sci 523:54–71

    Article  CAS  PubMed  Google Scholar 

  61. Bettinger CJ (2009) Synthesis and microfabrication of biomaterials for soft-tissue engineering. Pure Appl Chem 81(12):2183–2201

    Article  CAS  Google Scholar 

  62. Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H (2021) The role of natural polymers in bone tissue engineering. J Control Release 338:571–582

    Article  CAS  PubMed  Google Scholar 

  63. Todros S, Todesco M, Bagno A (2021) Biomaterials and their biomedical applications: from replacement to regeneration. Processes 9(11)

    Google Scholar 

  64. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M (2014) Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiolgiae Experimentalis (Wars) 74(2):5688–5706

    Google Scholar 

  66. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33(3):477

    Article  Google Scholar 

  67. Shah Idil A, Donaldson N (2018) The use of tungsten as a chronically implanted material. J Neural Eng 15(2):021006

    Article  CAS  PubMed  Google Scholar 

  68. Yoo YR, Cho HH, Jang SG, Lee KY, Son HY, Kim JG, Kim YS (2007) Effect of co-content on the corrosion of high performance stainless steels in simulated bio-solutions. Key Eng Mater 342–343:585–588

    Article  Google Scholar 

  69. Kolos E, Ruys A (2015) Biomimetic coating on porous alumina for tissue engineering: characterisation by cell culture and confocal microscopy. Materials 8(6):3584–3606

    Article  CAS  PubMed Central  Google Scholar 

  70. Pieralli S, Kohal RJ, Jung RE, Vach K, Spies BC (2017) Clinical outcomes of zirconia dental implants: a systematic review. J Dent Res 96(1):38–46

    Article  CAS  PubMed  Google Scholar 

  71. Rahman SU (2020) Hydroxyapatite and tissue engineering. In: Handbook of ionic substituted hydroxyapatites, pp 383–400

    Google Scholar 

  72. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technol 12:689–693

    CAS  Google Scholar 

  73. Kim BS, Sung HM, You HK, Lee J (2014) Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration. J Biosci Bioeng 118(4):469–475

    Article  CAS  PubMed  Google Scholar 

  74. Kim HD, Valentini RF (2002) Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 59(3):573–584

    Article  CAS  PubMed  Google Scholar 

  75. Seol YJ, Lee JY, Park YJ, Lee YM, Young K, Rhyu IC, Lee SJ, Han S-B, Chung C-P (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041

    Article  CAS  PubMed  Google Scholar 

  76. Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH (2012) Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater 24(31):4271–4277

    Article  CAS  PubMed  Google Scholar 

  77. Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7(1):152–162

    Article  CAS  PubMed  Google Scholar 

  78. Xie H, Gu Z, Li C, Franco C, Wang J, Li L, Meredith N, Ye Q, Wan C (2016) A novel bioceramic scaffold integrating silk fibroin in calcium polyphosphate for bone tissue-engineering. Ceram Int 42(2):2386–2392

    Article  CAS  Google Scholar 

  79. Naresh K, Suyash N, Behzad F (2022) Additively manufactured porous Ti6Al4V for bone implants: a review. Metals 12(4)

    Google Scholar 

  80. Allo BA, Costa DO, Dixon SJ, Mequanint K, Rizkalla AS (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3(2):432–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anupam S (2011) An overview of metallic biomaterials for bone support and replacement, biomedical engineering, trends in materials science. In Laskovski A (ed). InTech China, pp 153–168

    Google Scholar 

  82. Mudali UK, Sridhar TM, Raj B (2003) Corrosion of bio implants. Sadhana 28(3&4):601–637

    Google Scholar 

  83. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in Orthopaedic applications. Biomaterials 27(13):2651–2670

    Article  CAS  PubMed  Google Scholar 

  84. Behera A (2012) Classification of biomaterials used in medicine. Int J Adv Appl Sci 1(3):125–129

    Google Scholar 

  85. Billotte WC (2006) Ceramic biomaterials, pp 339.1–39.34

    Google Scholar 

  86. Tateish T (2007) Biomaterials in Asia: in commemoration of the 1st Asian biomaterials (Vol. ISBN: 13-978-981-283-574-1). World Scientific

    Google Scholar 

  87. Atala A (2008) Principles of regenerative medicine. Academic Press

    Google Scholar 

  88. Sarkar R, Banerjee G (2010) Ceramic based bio-medical implants. Interceram 59(2):98–102

    CAS  Google Scholar 

  89. Workie AB, Shih SJ (2022) Mesoporous bioactive glasses: synthesis, characterization, and their medical applications. Surf Rev Lett

    Google Scholar 

  90. Wu JJ, Wang SX, Zheng Z, Li JB (2022) Fabrication of biologically inspired electrospun collagen/silk fibroin/bioactive glass composited nanofibrous scaffold to accelerate the treatment efficiency of bone repair. Regenerative Ther 21:122–138

    Article  CAS  Google Scholar 

  91. Yang ML, Yu S, Zhao P, Shi GF, Guo Y, Xie LW, Lyu G, Yu JJ (2022) Fabrication of biologically inspired electrospun collagen/silk fibroin/bioactive glass composited nanofibrous to accelerate the treatment efficiency of wound repair. Int Wound J

    Google Scholar 

  92. Akiyama Y, Ito M, Toriumi T, Hiratsuka T, Arai Y, Tanaka S, Futenma T, Akiyama Y, Yamaguchi K, Azuma A, Hata KI, Natsume N, Honda M (2021) Bone formation potential of collagen type I-based recombinant peptide particles in rat calvaria defects*. Regenerative Ther 16:12–22

    Article  CAS  Google Scholar 

  93. Gassling V, Hedderich J, Acil Y, Purcz N, Wiltfang J, Douglas T (2013) Comparison of platelet rich fibrin and collagen as osteoblast-seeded scaffolds for bone tissue engineering applications. Clin Oral Implant Res 24(3):320–328

    Article  Google Scholar 

  94. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55(12):1613–1629

    Article  CAS  PubMed  Google Scholar 

  95. Santos TD, Abuna RPF, de Almeida ALG, Beloti MM, Rosa AL (2015) Effect of collagen sponge and fibrin glue on bone repair. J Appl Oral Sci 23(6):623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    Article  CAS  PubMed  Google Scholar 

  97. Schneider RK, Puellen A, Kramann R, Raupach K, Bornemann J, Knuechel R, Pérez-Bouza A, Neuss S (2010) The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31(3):467–480

    Article  CAS  PubMed  Google Scholar 

  98. Mehboob H, Chang S-H (2014) Application of composites to orthopedic prostheses for effective bone healing: a review. Compos Struct 118:328–341

    Article  Google Scholar 

  99. Iftekhar A (2004) Biomedical composites. Standard handbook of biomedical engineering and design. McGraw-Hill Companies

    Google Scholar 

  100. Salernitano E, Migliaresi C (2018) Composite materials for biomedical applications: a review. J Appl Biomater Funct Mater 1(1):3–18

    Google Scholar 

  101. Ficai A, Andronescu E, Ghitulica C, Voicu G, Trandafir V, Manzu D, Ficai M, Pall S (2009) Collagen/hydroxyapatite interactions in composite biomaterials. Materiale Plastice 46(1):11–15

    CAS  Google Scholar 

  102. Ficai A, Andronescu E, Trandafir V, Ghitulica C, Voicu G (2010) Collagen/hydroxyapatite composite obtained by electric field orientation. Mater Lett 64(4):541–544

    Article  CAS  Google Scholar 

  103. Ficai A, Andronescu E, Voicu G, Ghitulica C, Vasile BS, Ficai D, Trandafir V (2010) Self-assembled collagen/hydroxyapatite composite materials. Chem Eng J 160(2):794–800

    Article  CAS  Google Scholar 

  104. Andronescu E, Voicu G, Ficai M, Mohora IA, Trusca R, Ficai A (2011) Collagen/hydroxyapatite composite materials with desired ceramic properties. J Electron Microsc (Tokyo) 60(3):253–259

    Article  CAS  PubMed  Google Scholar 

  105. Valtanen RS, Yang YP, Gurtner GC, Maloney WJ, Lowenberg DW (2021) Synthetic and bone tissue engineering graft substitutes: what is the future? Injury 52(Suppl 2):S72–S77

    Article  PubMed  Google Scholar 

  106. Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2(21):3161–3184. https://doi.org/10.1039/C4TB00027G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang F, Zhang YC, Zhou H, Guo YC, Su XX (2014) Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells. J Biomed Mater Res A 102(3):760–768

    Article  PubMed  Google Scholar 

  108. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  PubMed  Google Scholar 

  109. Schmidt CH, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231

    Article  CAS  PubMed  Google Scholar 

  110. Andronescu E, Voicu G, Ficai M, Mohora IA, Trusca R, Ficai A (2011) Collagen/hydroxyapatite composite materials with desired ceramic properties. J Electron Microsc 60(3):253–259

    Article  CAS  Google Scholar 

  111. Ficai A, Albu MG, Birsan M, Sonmez M, Ficai D, Trandafir V, Andronescu E (2013) Collagen hydrolysate based collagen/hydroxyapatite composite materials. J Mol Struct 1037:154–159

    Article  CAS  Google Scholar 

  112. Nitti P, Kunjalukkal Padmanabhan S, Cortazzi S, Stanca E, Siculella L, Licciulli A, Demitri C (2021) Enhancing bioactivity of hydroxyapatite scaffolds using fibrous type I collagen. Front Bioeng Biotechnol 9:631177

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bian S, He M, Sui J, Cai H, Sun Y, Liang J, Fan Y, Zhang X (2016) The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloids Surf B Biointerfaces 140:392–402

    Article  CAS  PubMed  Google Scholar 

  114. Moreira CD, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C Mater Biol Appl 58:1207–1216

    Article  CAS  PubMed  Google Scholar 

  115. Prianka TR, Subhan N, Reza HM, Hosain MK, Rahman MA, Lee H, Sharker SM (2018) Recent exploration of bio-mimetic nanomaterial for potential biomedical applications. Mater Sci Eng C Mater Biol Appl 93:1104–1115

    Article  CAS  PubMed  Google Scholar 

  116. Reddy R, Reddy N (2018) Biomimetic approaches for tissue engineering. J Biomater Sci Polym Ed 29(14):1667–1685

    Article  CAS  PubMed  Google Scholar 

  117. Benyus JM (2009) Biomimicry: innovation inspired by nature. Pymble, NSW, Harper Collins

    Google Scholar 

  118. Feng C, Zhang W, Deng C, Li G, Chang J, Zhang Z, Jiang X, Wu C (2017) 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci (Weinh) 4(12):1700401

    Article  PubMed  Google Scholar 

  119. Saruta J, Ozawa R, Okubo T, Taleghani SR, Ishijima M, Kitajima H, Hirota M, Ogawa T (2021) Biomimetic zirconia with cactus-inspired meso-scale spikes and nano-trabeculae for enhanced bone integration. Int J Mol Sci 22(15)

    Google Scholar 

  120. Gruber P (2009) Biomimetics in architecture—inspiration from plants 6th plant biomimetics conference—cayenne, November 16–21

    Google Scholar 

  121. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  122. Dearman BL, Boyce ST, Greenwood JE (2021) Advances in skin tissue bioengineering and the challenges of clinical translation. Front Surg 8:640879

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kuznetsova TA, Andryukov BG, Besednova NN (2022) Modern aspects of burn injury immunopathogenesis and prognostic immunobiochemical markers (Mini-Review). BioTech (Basel) 11(2)

    Google Scholar 

  124. Spoială A, Ilie C-I, Ficai D, Ficai A, Andronescu E (2022) Synergic effect of honey with other natural agents in developing efficient wound dressings. Antioxidants 12(1), Article 34

    Google Scholar 

  125. Raghunath M, Hopfner B, Aeschlimann D, Luthi U, Meuli M, Altermatt S, Gobet R, BrucknerTuderman L, Steinmann B (1996) Cross-linking of the dermo-epidermal junction of skin regenerating from keratinocyte autografts—anchoring fibrils are a target for tissue transglutaminase. J Clin Investig 98(5):1174–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Raghunath M, Meuli M (1997) Cultured epithelial autografts: diving from surgery into matrix biology. Pediatr Surg Int 12(7):478–483

    Article  CAS  PubMed  Google Scholar 

  127. Hinterhuber G, Marquardt Y, Diem E, Rappersberger K, Wolff K, Foedinger D (2002) Organotypic keratinocyte co-culture using normal human serum: an immunomorphological study at light and electron microscopic levels. Exp Dermatol 11(5):413–420

    Article  PubMed  Google Scholar 

  128. Braziulis E, Biedermann T, Hartmann-Fritsch F, Schiestl C, Pontiggia L, Bottcher-Haberzeth S, Reichmann E, Meuli M (2011) Skingineering I: engineering porcine dermo-epidermal skin analogues for autologous transplantation in a large animal model. Pediatr Surg Int 27(3):241–247

    Article  PubMed  Google Scholar 

  129. Biedermann T, Bottcher-Haberzeth S, Klar AS, Pontiggia L, Schiestl C, Meuli-Simmen C, Reichmann E, Meuli M (2013) Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation? Pediatr Surg Int 29(1):71–78

    Article  PubMed  Google Scholar 

  130. Biedermann T, Klar AS, Bottcher-Haberzeth S, Schiestl C, Reichmann E, Meuli M (2014) Tissue-engineered dermo-epidermal skin analogs exhibit de novo formation of a near natural neurovascular link 10 weeks after transplantation. Pediatr Surg Int 30(2):165–172

    Article  PubMed  Google Scholar 

  131. Hartmann-Fritsch F, Biedermann T, Braziulis E, Luginbuhl J, Pontiggia L, Bottcher-Haberzeth S, van Kuppevelt TH, Faraj KA, Schiestl C, Meuli M, Reichmann E (2016) Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention. J Tissue Eng Regen Med 10(1):81–91

    Article  CAS  PubMed  Google Scholar 

  132. Pontiggia L, Van Hengel IAJ, Klar A, Rutsche D, Nanni M, Scheidegger A, Figi S, Reichmann E, Moehrlen U, Biedermann T (2022) Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J Tissue Eng 13

    Google Scholar 

  133. Qiang A (2016) Progress of nerve bridges in the treatment of peripheral nerve disruptions. J Neurorestoratology 4:107–113

    Article  Google Scholar 

  134. Abdelbasset WK, Jasim SA, Sharma SK, Margiana R, Bokov DO, Obaid MA, Hussein BA, Lafta HA, Jasim SF, Mustafa YF (2022) Alginate-based hydrogels and tubes, as biological macromolecule-based platforms for peripheral nerve tissue engineering: a review. Ann Biomed Eng 50(6):628–653

    Article  PubMed  Google Scholar 

  135. Gu XK, Yi S, Deng AD, Liu H, Xu L, Gu JH, Gu XS (2022) Combined use of chitosan-PGLA nerve grafts and bone marrow mononuclear cells to repair a 50-mm-long median nerve defect combined with an 80-mm-long ulnar nerve defect in the human upper arm. Curr Stem Cell Res Ther 17(4):389–397

    Article  CAS  PubMed  Google Scholar 

  136. Khan HM, Liao XX, Sheikh BA, Wang YX, Su ZX, Guo C, Li ZY, Zhou CC, Cen Y, Kong QQ (2022) Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 10(36):6859–6895

    Article  CAS  PubMed  Google Scholar 

  137. Nune M, Bhat M, Nagarajan A (2022) Design of ECM functionalized polycaprolactone aligned nanofibers for peripheral nerve tissue engineering. J Med Biol Eng 42(2):147–156

    Article  Google Scholar 

  138. Wang B, Lu CF, Liu ZY, Han S, Wei P, Zhang DY, Kou YH, Jiang BG (2022) Chitin scaffold combined with autologous small nerve repairs sciatic nerve defects. Neural Regeneration Res 17(5):1106-+

    Google Scholar 

  139. Zeng ZP, Yang YJ, Deng JY, Rahman MSU, Sun CM, Xu SS (2022) Physical stimulation combined with biomaterials promotes peripheral nerve injury repair. Bioeng-Basel 9(7). https://doi.org/10.3390/bioengineering9070292

  140. Zhang FS, Zhang M, Liu SY, Li C, Ding ZT, Wan T, Zhang PX (2022) Application of hybrid electrically conductive hydrogels promotes peripheral nerve regeneration. Gels 8(1)

    Google Scholar 

  141. Zhang LL, Zheng TT, Wu LL, Han Q, Chen SY, Kong Y, Li GC, Ma L, Wu H, Zhao YH, Yu YX, Yang YM (2021) Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth. Nanotechnol Rev 10(1):50–61

    Article  CAS  Google Scholar 

  142. Zhang XD, Meng YX, Gong BW, Wang T, Lu YL, Zhang LQ, Xue JJ (2022) Electrospun nanofibers for manipulating soft tissue regeneration. J Mater Chem B 10(37):7281–7308

    Article  CAS  PubMed  Google Scholar 

  143. Lin B, Dun G, Jin D, Du Y (2019) Development of polypyrrole/collagen/nano-strontium substituted bioactive glass composite for boost sciatic nerve rejuvenation in vivo. Artif Cells Nanomed Biotechnol 47(1):3423–3430

    Article  CAS  PubMed  Google Scholar 

  144. Nerem RM, Ensley AE (2004) The tissue engineering of blood vessels and the heart. Am J Transplant 4(Suppl 6):36–42

    Article  CAS  PubMed  Google Scholar 

  145. Bertanha M, Moroz A, Almeida R, Alves FC, Acorci Valerio MJ, Moura R, Domingues MA, Sobreira ML, Deffune E (2014) Tissue-engineered blood vessel substitute by reconstruction of endothelium using mesenchymal stem cells induced by platelet growth factors. J Vasc Surg 59(6):1677–1685

    Article  PubMed  Google Scholar 

  146. Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D (2019) Collagen-based tissue engineering strategies for vascular medicine. Front Bioeng Biotechnol 7:166

    Article  PubMed  PubMed Central  Google Scholar 

  147. Antunes M, Bonani W, Reis RL, Migliaresi C, Ferreira H, Motta A, Neves NM (2022) Development of alginate-based hydrogels for blood vessel engineering. Biomater Adv 134:112588

    Article  PubMed  Google Scholar 

  148. Idaszek J, Volpi M, Paradiso A, Nguyen Quoc M, Górecka Ż, Klak M, Tymicki G, Berman A, Wierzbicki M, Jaworski S, Costantini M, Kępczyńska A, Chwalibóg ES, Wszoła M, Święszkowski W (2021) Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: a step towards vascularized pancreas grafts. Bioprinting 24:e00163

    Article  Google Scholar 

  149. Du J, Hu X, Su Y, Wei T, Jiao Z, Liu T, Wang H, Nie Y, Li X, Song K (2022) Gelatin/sodium alginate hydrogel-coated decellularized porcine coronary artery to construct bilayer tissue engineered blood vessels. Int J Biol Macromol 209(Pt B):2070–2083

    Article  CAS  PubMed  Google Scholar 

  150. Brewster L, Brey EM, Greisler HP (2014) Blood vessels, pp 793–812

    Google Scholar 

  151. Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189(2):340–347

    Article  CAS  PubMed  Google Scholar 

  152. Michael PL, Yang NJ, Moore M, Santos M, Lam YT, Ward A, Hung JC, Tan RP, Wise SG (2022) Synthetic vascular graft with spatially distinct architecture for rapid biomimetic cell organisation in a perfusion bioreactor. Biomed Mater 17(4)

    Google Scholar 

  153. Amukarimi S, Ramakrishna S, Mozafari M (2021) Smart biomaterials—a proposed definition and overview of the field. Curr Opin Biomed Eng 19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Ficai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spoială, A., Ilie, CI., Ficai, D., Ficai, A. (2023). Biomaterials. In: Gunduz, O., Egles, C., Pérez, R.A., Ficai, D., Ustundag, C.B. (eds) Biomaterials and Tissue Engineering. Stem Cell Biology and Regenerative Medicine, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-35832-6_4

Download citation

Publish with us

Policies and ethics