Skip to main content

Food Chain Contamination and Impact of Xenobiotics on Human Health

  • Chapter
  • First Online:
Xenobiotics in Urban Ecosystems

Abstract

Environmental pollution affects several fields such as soil, sediments, air, and water systems. These are due to the rapid and uncontrollable growth of means of transport (ships, automobiles, trucks, trains, planes, etc.), in addition to the thousands of types of chemicals used at all levels. All these automatically lead to the contamination of the environment by all kinds of liquid, gaseous, and/or solid products and also the contamination of agricultural food and crops by pesticides and fertilizers applied directly into the soil. The foreign contaminants that exceptionally affect the soil can be considered as xenobiotics. Toxic substances that are naturally created by xenobiotics are known as natural poisons. No harm to the organisms, these toxins are dangerous if consumed by other animals or people. These chemical compounds have a wide range of toxicity because of their various structures and biological roles. In some cases, plants produce natural toxins to protect themselves against harmful microbes, or animals ingest toxin-producing xenobiotics. Toxins found in nature can have a wide range of negative impacts on human and cattle health. Toxins of this caliber can be lethal. The immune, reproductive, and nervous systems can be affected, and cancer can develop due to long-term exposure; in addition to microscopic algae and plankton found in oceans and lakes, there are other natural sources of poisons. These species create chemical compounds that are dangerous to humans but not fish or shellfish that eat the toxin producers. Toxins found in fish and shellfish can swiftly cause illness in humans who consume them. To keep humans safe, natural poisons must be minimized as much as possible. Toxins found in nature damage animal and human health and limit access to nutritious meals for the general population. The World Health Organization (WHO) encourages national authorities to keep track of the levels of natural toxins in their food supply and ensure they are kept as low as possible while still adhering to all applicable legal requirements and maximum levels, on a local as well as an international scale. Higher authorities also establish standards and restrictions to minimize exposure to natural poisons in certain foods. In this chapter, we have attempted to examine xenobiotic metabolism in the health of organisms and the effects of chemicals in contact with food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165(1–3):1–12

    Article  CAS  Google Scholar 

  • Al-Wabel MI, El-Saeid MH, Al-Turki AM, Abdel-Nasser G (2011) Monitoring of pesticide residues in Saudi Arabia agricultural soils. Res J Environ Sci 5(3):269

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Berset JD, Ejem M, Holzer R, Lischer P (1999) Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. Anal Chim Acta 383(3):263–275

    Article  CAS  Google Scholar 

  • Bharadwaj A (2018) Bioremediation of xenobiotics: an eco-friendly cleanup approach. In: Green chemistry in environmental sustainability and chemical education. Springer, Singapore, pp 1–13

    Google Scholar 

  • Bound JP, Kitsou K, Voulvoulis N (2006) Household disposal of pharmaceuticals and perception of risk to the environment. Environ Toxicol Pharmacol 21(3):301–307

    Article  CAS  Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, Deleo PC, Dyer SD, Ericson JF, GagnĂ© F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Article  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532

    Article  CAS  Google Scholar 

  • Brodie ED Jr, Ridenhour BJ, Brodie ED III (2002) The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56(10):2067–2082

    Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, GarcĂ­a-Jares C, RodrĂ­guez I, GĂłmez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  Google Scholar 

  • Comerton AM, Andrews RC, Bagley DM (2009) Practical overview of analytical methods for endocrine-disrupting compounds, pharmaceuticals and personal care products in water and wastewater. Philos Trans R Soc A Math Phys Eng Sci 367(1904):3923–3939

    Article  CAS  Google Scholar 

  • Comoretto L, Chiron S (2005) Comparing pharmaceutical and pesticide loads into a small Mediterranean river. Sci Total Environ 349(1–3):201–210

    Article  CAS  Google Scholar 

  • Couto SR (2009) Dye removal by immobilised fungi. Biotechnol Adv 27(3):227–235

    Article  Google Scholar 

  • Croom E (2012) Metabolism of xenobiotics of human environments. Prog Mol Biol Transl Sci 112:31–88

    Article  CAS  Google Scholar 

  • de Oliveira M, Frihling BEF, Velasques J, MagalhĂŁes Filho FJC, Cavalheri PS, Migliolo L (2020) Pharmaceuticals residues and xenobiotics contaminants: occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Sci Total Environ 705:135568

    Article  Google Scholar 

  • de Paiva Pessoa G, dos Santos AB, de Souza NC, Alves JAC, do Nascimento RF (2012) Development of methodology to determine estrogens in wastewater treatment plants. QuĂ­m Nova 35:968–973

    Google Scholar 

  • DÄ™bska J, Kot-wasik A, NamieĹ›nik J (2004) Fate and analysis of pharmaceutical residues in the aquatic environment. Crit Rev Anal Chem 34:51–67

    Article  Google Scholar 

  • Ebele AJ, Abdallah MAE, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3(1):1–16

    Article  Google Scholar 

  • Fountoucidou P, Veskoukis AS, Kerasioti E, Docea AO, Taitzoglou IA, Liesivuori J, Kouretas D (2019) A mixture of routinely encountered xenobiotics induces both redox adaptations and perturbations in blood and tissues of rats after a long-term low-dose exposure regimen: the time and dose issue. Toxicol Lett 317:24–44

    Article  CAS  Google Scholar 

  • Gil A (2007) Management of salt cake generated at secondary aluminum melting plants by disposal in a controlled landfill: characteristics of the controlled landfill and a study of environmental impacts. Environ Eng Sci 24(9):1234–1244

    Article  CAS  Google Scholar 

  • Glanze WD (1996) Mosby medical encyclopedia, Revised edition. CV Mosby, St. Louis

    Google Scholar 

  • Goel A (2021) Short review on xenobiotics and human health. Int J Nutr Lifestyle 1(3):87–92

    Google Scholar 

  • Gu C (2019) Urbanization: processes and driving forces. Sci China Earth Sci 62(9):1351–1360

    Article  CAS  Google Scholar 

  • Gupta SK, Chabukdhara M, Kumar P, Singh J, Bux F (2014) Evaluation of ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicol Environ Saf 110:49–55

    Article  CAS  Google Scholar 

  • Gupta SK, Chabukdhara M, Singh J, Bux F (2015) Evaluation and potential health hazard of selected metals in water, sediments, and fish from the Gomti River. Hum Ecol Risk Assess Int J 21(1):227–240

    Article  CAS  Google Scholar 

  • Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264

    Article  CAS  Google Scholar 

  • Gupta SK, Ansari FA, Nasr M, Chabukdhara M, Bux F (2018) Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban, South Africa. Environ Monit Assess 190(3):1–15

    Article  CAS  Google Scholar 

  • Gupta SK, Singh B, Mungray AK, Bharti R, Nema AK, Pant KK, Mulla SI (2022) Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustain Energy Technol Assess 49:101652

    Google Scholar 

  • Hamelers HV, Ter Heijne A, Sleutels TH, Jeremiasse AW, Strik DP, Buisman CJ (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1673–1685

    Article  CAS  Google Scholar 

  • Hedenmo M, Eriksson B-M (1995) Liquid chromatographic determination of the macrolide antibiotics roxithromycin and clarithromycin in plasma by automated solid-phase extraction and electrochemical detection. J Chromatogr A 692:161–166

    Article  CAS  Google Scholar 

  • Helaleh MI, Al-Omair A, Nisar A, Gevao B (2005) Validation of various extraction techniques for the quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludges using gas chromatography-ion trap mass spectrometry. J Chromatogr A 1083(1–2):153–160

    Article  CAS  Google Scholar 

  • Hlavinek P, Bonacci O, Marsalek J, Mahrikova I (2007) Dangerous pollutants (xenobiotics) in urban water cycle. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Hoai PM, Ngoc NT, Minh NH, Viet PH, Berg M, Alder AC, Giger W (2010) Recent levels of organochlorine pesticides and polychlorinated biphenyls in sediments of the sewer system in Hanoi, Vietnam. Environ Pollut 158(3):913–920

    Article  CAS  Google Scholar 

  • Jin X, Hu J, Ong SL (2007) Influence of dissolved organic matter on estrone removal by NF membranes and the role of their structures. Water Res 41:3077–3088

    Article  CAS  Google Scholar 

  • Joselow MM (1983) Systematic toxicity testing for xenobiotics in foods. In: Xenobiotics in foods and feeds. American Chemical Society, Washington, DC, pp 1–14

    Google Scholar 

  • Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696

    Article  CAS  Google Scholar 

  • Knackmuss H-J (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol 51:287–295

    Article  CAS  Google Scholar 

  • Kobzev K, Kobzeva N, Chegge V, Balinskaya M, Bozhenko E, Saakian S, Sarkisian D (2020) Ecological problems in the Russian Federation. Impact on the health of people and the country’s economy. In: E3S web of conferences, vol 217. EDP Sciences, Les Ulis, p 11001

    Google Scholar 

  • Koester CJ, Moulik A (2005) Trends in environmental analysis. Anal Chem 77(12):3737–3754

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Kovtunova N, Kovtunov V, Popov A, Volodin A, Shishova E, Romanyukin A (2020) Inheritance of the main quantitative traits in sweet sorghum hybrids F1. In: E3S web of conferences, vol 175. EDP Sciences, Les Ulis, p 01012

    Google Scholar 

  • Krishnamurthi K, Devi F, Chakrabarti T (2003) Genotoxic effects of PAH containing sludge extracts in Chinese hamster ovary cell cultures. Biomed Environ Sci 16(1):68–82

    CAS  Google Scholar 

  • Kucherenko SV, Ovcharenko AM, Pushenko SL (2021) Xenobiotics: a threat to the health of living organisms. In: E3S web of conferences, vol 285. EDP Sciences, Les Ulis, p 3006

    Google Scholar 

  • Kuhad RC, Sood N, Tripathi KK, Singh A, Ward OP (2004) Developments in microbial methods for the treatment of dye effluents. Adv Appl Microbiol 56:185–213

    Article  CAS  Google Scholar 

  • Kuipers RS, Joordens JCA, Muskiet FAJ (2012) A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev 25:96–129

    Article  Google Scholar 

  • Kumarasamy P, Govindaraj S, Vignesh S, Rajendran RB, James RA (2012) Anthropogenic nexus on organochlorine pesticide pollution: a case study with Tamiraparani river basin, South India. Environ Monit Assess 184(6):3861–3873

    Article  CAS  Google Scholar 

  • KĂĽmmerer K (ed) (2008) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer Science & Business Media, Berlin

    Google Scholar 

  • Larsen CS (1995) Biological changes in human populations with agriculture. Annu Rev Anthropol 24:185–213

    Article  Google Scholar 

  • Lienert J, GĂĽdel K, Escher BI (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41(12):4471–4478

    Article  CAS  Google Scholar 

  • Lin AYC, Tsung HY, Shaik KL (2009) Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J Hazard Mater 167(1–3):1163–1169

    Article  CAS  Google Scholar 

  • Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    Article  CAS  Google Scholar 

  • Livingstone DR, Donkin P, Walker CH (1992) Pollutants in marine ecosystems: an overview. In: Persistent pollutants in marine ecosystems. Pergamon Press, Oxford, pp 235–263

    Chapter  Google Scholar 

  • Mahmood A, Hashmi MZ, Qadir A (2017) Xenobiotics in the food chain: quantitative analysis, toxic impact, and usage history. In: Xenobiotics in the soil environment. Springer, Cham, pp 119–124

    Chapter  Google Scholar 

  • Masci M, Orban E, Nevigato T (2014) Organochlorine pesticide residues: an extensive monitoring of Italian fishery and aquaculture. Chemosphere 94:190–198

    Article  CAS  Google Scholar 

  • Mathon B, Coquery M, Miege C, Penru Y, Choubert J-M (2017) Removal efficiencies and kinetic rate constants of xenobiotics by ozonation in tertiary treatment. Water Sci Technol 75:2737–2746

    Article  CAS  Google Scholar 

  • Meador JP, Yeh A, Young G, Gallagher EP (2016) Contaminants of emerging concern in a large temperate estuary. Environ Pollut 213:254–267

    Article  CAS  Google Scholar 

  • Michael AV (2015) Endocrine disruptors. In: Molecular nutrition the practical guide. Endocrine Press, Washington, DC

    Google Scholar 

  • Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN (2022) Degradation of xenobiotic pollutants: an environmentally sustainable approach. Metabolites 12:818

    Article  CAS  Google Scholar 

  • Mishra VK, Singh G, Shukla R (2019) Impact of xenobiotics under a changing climate scenario. In: Climate change and agricultural ecosystems. Woodhead Publishing, Duxford, pp 133–151

    Chapter  Google Scholar 

  • Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S (2021) Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol 9:632059

    Article  Google Scholar 

  • Mutiyar PK, Gupta SK, Mittal AK (2018) Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: an ecotoxicological risk assessment approach. Ecotoxicol Environ Saf 150:297–304

    Article  CAS  Google Scholar 

  • Navarro S, Vela N, Navarro G (2007) An overview on the environmental behaviour of pesticide residues in soils. Span J Agric Res 5(3):357–375

    Article  Google Scholar 

  • Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234

    Article  CAS  Google Scholar 

  • Nogacka AM, GĂłmez-MartĂ­n M, Suárez A, González-Bernardo O, de Los Reyes-Gavilán CG, González S (2019) Xenobiotics formed during food processing: their relation with the intestinal microbiota and colorectal cancer. Int J Mol Sci 20(8):2051

    Article  CAS  Google Scholar 

  • Omelchenko EV, Trushkova EA, Sokolova GN, Nikhayeva AV, Hvostikov AG (2017) Algorithm of research of influence of professional and ecological risk factors for various groups of the population. IOP Conf Ser: Earth Environ Sci 66(1):012032. IOP Publishing

    Google Scholar 

  • Panter KE, Stegelmeier BL (2011) Effects of xenobiotics and phytotoxins on reproduction in food animals. Vet Clin: Food Anim Pract 27(2):429–446

    Google Scholar 

  • Patel D, Sen DJ (2013) Xenobiotics: an essential precursor for living system. Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Gujarat

    Google Scholar 

  • Patterson AD, Gonzalez FJ, Idle JR (2010) Xenobiotic metabolism: a view through the metabolometer. Chem Res Toxicol 23:851–860

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  Google Scholar 

  • Pereira L, Alves M (2012) Dyes—environmental impact and remediation. In: Environmental protection strategies for sustainable development. Springer, Dordrecht, pp 111–162

    Chapter  Google Scholar 

  • Pereira ARB, de Freitas DAF (2012) Uso de micro-organismos para a biorremediação de ambientes impactados. Rev EletrĂ´n Em Gest, Educ Tecnol Ambient 6:995–1006

    Google Scholar 

  • Petrovic M, Gonzalez S, BarcelĂł D (2013) Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22:10

    Google Scholar 

  • Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56(7):2146–2151

    Article  CAS  Google Scholar 

  • Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162

    Article  CAS  Google Scholar 

  • Roccaro P, Sgroi M, Vagliasindi FG (2013) Removal of xenobiotic compounds from wastewater for environment protection: treatment processes and costs. Chem Eng Trans 32:505–510

    Google Scholar 

  • Rosal R, RodrigĂ©z A, PerdigĂłn-MĂ©lon JA, Petre A, GarcĂ­a-Calvo E, GĂłmez MJ, AgĂĽera A, Fernández-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44:578–588

    Article  CAS  Google Scholar 

  • Rosner D, Markowitz G (2013) Persistent pollutants: a brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environ Res 120:126–133

    Article  CAS  Google Scholar 

  • Ross PS, De Swart RL, Reijnders PJ, Van Loveren H, Vos JG, Osterhaus AD (1995) Contaminant-related suppression of delayed-type hypersensitivity and antibody responses in harbor seals fed herring from the Baltic Sea. Environ Health Perspect 103:162–167

    Article  CAS  Google Scholar 

  • Santos MCM et al (2013) Development and validation of spectrophotometric method for determination of methotrexate incorporated into PLGA implants. Int J Drug Dev Res 5:154–160

    CAS  Google Scholar 

  • Schwab M (2008) Encyclopedia of cancer. Springer Science & Business Media, Cham

    Google Scholar 

  • SemiĂŁo AJC, Schäfer AI (2010) Xenobiotics removal by membrane technology: an overview. In: Xenobiotics in the urban water cycle. Springer, Dordrecht, pp 307–338

    Chapter  Google Scholar 

  • Singh S, Lal S, Harjit J, Amlathe S, Kataria H (2011) Potential of metal extractants in determination of trace metals in water sample. Adv Stud Biol 3(5):239–246

    CAS  Google Scholar 

  • Singh P, Singh VK, Singh R, Borthakur A, Madhav S, Ahamad A, Kumar A, Pal DB, Tiwary D, Mishra PK (2020) Bioremediation: a sustainable approach for management of environmental contaminants. In: Abatement of environmental pollutants. Elsevier, Amsterdam, pp 1–23

    Google Scholar 

  • Sliwka-KaszyĹ„ska M (2007) Calixarenes as stationary phases in high performance liquid chromatography. Crit Rev Anal Chem 37:211–224

    Article  Google Scholar 

  • Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger JC, Pearson M, Eschbach PJ, Bravata DM (2012) Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann Intern Med 157(5):348–366

    Article  Google Scholar 

  • Ĺ tefanac T, Grgas D, Landeka DragiÄŤević T (2021) Xenobiotics—division and methods of detection: a review. J Xenobiot 11(4):130–141

    Article  Google Scholar 

  • Tanacredi JT (1977) Petroleum hydrocarbons from effluents: detection in marine environment. J Water Pollut Control Fed 49:216–226

    CAS  Google Scholar 

  • Ternes TA (2001) Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends Anal Chem 20:419–434

    Article  CAS  Google Scholar 

  • Ternes T (2007) The occurrence of micopollutants in the aquatic environment: a new challenge for water management. Water Sci Technol 55(12):327–332

    Article  CAS  Google Scholar 

  • Thurman EM, Bastian KC, Mollhagen T (2000) Occurrence of cotton herbicides and insecticides in playa lakes of the High Plains of West Texas. Sci Total Environ 248:189–200

    Article  CAS  Google Scholar 

  • Velasques J, Cardoso MH, Abrantes G, Frihling BE, Franco OL, Migliolo L (2017) The rescue of botanical insecticides: a bioinspiration for new niches and needs. Pestic Biochem Physiol 143:14–25

    Article  CAS  Google Scholar 

  • Verlicchi P, Ghirardini A (2019) Occurrence of micropollutants in wastewater and evaluation of their removal efficiency in treatment trains: the influence of the adopted sampling mode. Water 11(6):1152

    Article  CAS  Google Scholar 

  • Visioli F (2015) Xenobiotics and human health: a new view of their pharma-nutritional role. PharmaNutrition 3(2):60–64

    Article  CAS  Google Scholar 

  • Wells JCK, Stock JT (2020) Life history transitions at the origins of agriculture: a model for understanding how niche construction impacts human growth, demography and health. Front Endocrinol 11:325

    Article  Google Scholar 

  • Zemlyanova MA, Kol’dibekova YV, Zemlyanova MA, Zemlyanova MA, Koldibekova YV (2012) Modern approaches to assessment of metabolism disorders of xenobiotics during their administration into body from external environment. Ekol Cheloveka (Hum Ecol) 8:8–14

    Google Scholar 

  • Zhang S, Yang Y-L, Lu J, Zuo X-J, Yang X-L, Song H-L (2020) A review of bioelectrochemical systems for antibiotic removal: efficient antibiotic removal and dissemination of antibiotic resistance genes. J Water Process Eng 37:101421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Ben Seghir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben Seghir, B. et al. (2023). Food Chain Contamination and Impact of Xenobiotics on Human Health. In: Singh, R., Singh, P., Tripathi, S., Chandra, K.K., Bhadouria, R. (eds) Xenobiotics in Urban Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-35775-6_6

Download citation

Publish with us

Policies and ethics