Skip to main content

GANASUNet: An Efficient Convolutional Neural Architecture for Segmenting Iron Ore Images

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

Iron ore segmentation has a challenge in segmenting different types of ores in the same area; the detection and segmentation of iron ore are used to analyze the material quality and optimize the plant processing. This paper presents an UNet-based Convolutional Neural Network (CNN) optimized by a technique so-called Neural Architecture Search(NAS) to segment fine iron ore regions. The images were collected from an iron ore plant, in which it was possible to obtain a dataset composed of 688 images and their label segmentation. The results of the optimized architecture show that the UNet-based architecture achieved a result of 80% of Intersect Over Union(IoU) against UNet without optimization with 75% and DeepLabV3+ with 78%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Beers, F.: Capsule networks with intersection over union loss for binary image segmentation, February 2021. https://doi.org/10.5220/0010301300710078

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017)

    Google Scholar 

  3. Chen, M., Li, M., Li, Y., Yi, W.: Rock particle motion information detection based on video instance segmentation. Sensors (Basel, Switzerland) 21 (2021)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Domingos, D., Carmona Cortes, O., Lobato, F.: Evoluindo redes neurais convolucionais na detecção de emoções usando micro ags (05 2022)

    Google Scholar 

  6. Duan, J., Liu, X., Wu, X., Chuangang, M.: Detection and segmentation of iron ore green pellets in images using lightweight u-net deep learning network. Neural Comput. Appl. 32 (2020). https://doi.org/10.1007/s00521-019-04045-8

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  8. Hernandez-Garcia, A.: Data augmentation and image understanding. arXiv preprint arXiv:2012.14185 (2020)

  9. Liu, X., Yuwei, Z., Jing, H., Wang, L., Sheng, Z.: Ore image segmentation method using u-net and res_unet convolutional networks. RSC Advances 10, 9396–9406 (2020)

    Article  Google Scholar 

  10. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression (2019)

    Google Scholar 

  11. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658–666 (2019). https://doi.org/10.1109/CVPR.2019.00075

  12. Roerdink, J., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fundam. Inf. 41 (2003). https://doi.org/10.3233/FI-2000-411207

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  15. Svensson, T.: Semantic Segmentation of Iron Ore Pellets with Neural Networks (Dissertation). Ph.D. thesis, Luleå University of Technology (2019). http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74352

  16. Weng, Y., Zhou, T., Li, Y., Qiu, X.: Nas-unet: neural architecture search for medical image segmentation. IEEE Access 7, 44247–44257 (2019). https://doi.org/10.1109/ACCESS.2019.2908991

    Article  Google Scholar 

  17. Ying, X.: An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168, 022022 (2019). DOI: https://doi.org/10.1088/1742-6596/1168/2/022022

  18. Yurtkulu, S.C., Şahin, Y.H., Unal, G.: Semantic segmentation with extended deeplabv3 architecture. In: 2019 27th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Andres Carmona Cortes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, A.C.F., Cortes, O.A.C. (2023). GANASUNet: An Efficient Convolutional Neural Architecture for Segmenting Iron Ore Images. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-031-35510-3_27

Download citation

Publish with us

Policies and ethics