Skip to main content

Sustainable Technologies and Materials for Future Fashion

  • Chapter
  • First Online:
Novel Sustainable Process Alternatives for the Textiles and Fashion Industry

Abstract

The textile and fashion industry, responsible for 5.4% of the world’s pollution, is considered the fifth most unsustainable industry. It dramatically impacts the environment, from raw materials to finished goods. Waste generation occurs at every stage of manufacturing, and sustainability stands as the need of the hour. Although natural materials (like cotton, hemp, jute, etc.) are considered sustainable, the production of those materials requires a large amount of cultivation land and water. Most consumers believe that the use of natural textiles protects the environment. However, different sources provide the opposite facts and prove that manufacturing natural fiber (like cotton) is extremely pollutant. The production of synthetic fibers relies on non-renewable resources, and their extraction process involves the usage of high-energy machinery. The most commonly used synthetic material in the fashion industry is polyester, and manufacturing requires intensive heating and a large quantity of water for the cooling process. Besides harming animals, the leather industry is responsible for 15% of human-induced greenhouse gas emissions and uses a large quantity of water and chemicals in the tanning process. To overcome the environmental impacts of existing materials, research works are made to identify sustainable alternatives. This chapter aims to analyze and consolidate the latest, sustainable novel materials and their technologies for the fashion industry. Also, the technological and economic feasibility of those materials in commercialization will be evaluated. Significant importance is given to established materials like citrus fibers, bacterial cellulose in fashion applications, and vegan leather products like cactus leather and mycelium leather. The last section of the chapter outlines the barriers to these future technologies with potential application scope in the textile and fashion industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Negrete, J. D. C., & López, V. N. (2020). A sustainability overview of the supply chain management in textile industry. International Journal of Trade, Economics and Finance, 11(5), 92–97. https://doi.org/10.18178/ijtef.2020.11.5.673

    Article  Google Scholar 

  2. Ellen MacArthur Foundation. (2017). A new textiles economy: Redesigning fashion’s future. https://ellenmacarthurfoundation.org/a-new-textiles-economy (Accessed on 26.6.23)

  3. Remy, N., Speelman, E., & Swartz, S. (2016). Style that’s sustainable: A new fast-fashion formula. McKinsey and Company. https://www.mckinsey.com/capabilities/sustainability/our-insights/style-thats-sustainable-a-new-fast-fashion-formula (Accessed on 3.1.23)

  4. Textile Exchange. (2022). Preferred Fiber & Materials Market Report. https://textileexchange.org/app/uploads/2022/10/Textile-Exchange_PFMR_2022.pdf

  5. Shepherd, H. (2019). Thirsty for fashion? https://catalogue.unccd.int/1352_thirsty-for-fashion-soil-association-report.pdf (Accessed on 12.1.23)

  6. Stone, C., Windsor, F. M., Munday, M., & Durance, I. (2020). Natural or synthetic – How global trends in textile usage threaten freshwater environments. Science of the Total Environment, 718, 134689. https://doi.org/10.1016/j.scitotenv.2019.134689

    Article  CAS  Google Scholar 

  7. Roy Choudhury, A. K. (2014). Environmental impacts of the textile industry and its assessment through life cycle assessment. In S. Muthu (Ed.), Roadmap to sustainable textiles and clothing (Textile science and clothing technology) (1st ed., pp. 1–39). Springer. https://doi.org/10.1007/978-981-287-110-7_1

    Chapter  Google Scholar 

  8. Roos, S. (2016). Advancing life cycle assessment of textile products to include textile chemicals. Inventory data and toxicity impact assessment. https://publications.lib.chalmers.se/records/fulltext/246361/246361.pdf (Accessed on 03.01.23)

  9. Muthu, S. S. (2016). Handbook of life cycle assessment (LCA) of textiles and clothing (1st ed.). Woodhead Publishing. https://doi.org/10.1016/C2014-0-00761-7

    Book  Google Scholar 

  10. Browne, M. A., et al. (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science & Technology (ACS Publications), 45, 9175–9179.

    Article  CAS  Google Scholar 

  11. Napper, I. E., & Thompson, R. C. (2016). Release of synthetic microplastic plastic fi bres from domestic washing machines: Effects of fabric type and washing conditions. MPB. https://doi.org/10.1016/j.marpolbul.2016.09.025

  12. De Falco, F. (2018). Microplastic pollution from synthetic textiles: Quantitative evaluation and mitigation strategies. http://www.fedoa.unina.it/12577/ (Accessed on 12.11.2022)

  13. Chavan, P., Singh, A. K., & Kaur, G. (2018). Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review. Journal of Food Process Engineering, 41(8). https://doi.org/10.1111/jfpe.12895

  14. Zema, D. A., Calabrò, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste Management, 80. https://doi.org/10.1016/j.wasman.2018.09.024

  15. Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research, 2(1). https://doi.org/10.1016/j.afres.2022.100050

  16. Zhu, Z., et al. (2020). Valorization of waste and by-products from food industries through the use of innovative technologies. In Agri-food industry strategies for healthy diets and sustainability. https://doi.org/10.1016/b978-0-12-817226-1.00011-4

    Chapter  Google Scholar 

  17. Multari, S., Licciardello, C., Caruso, M., Anesi, A., & Martens, S. (2021). Flavedo and albedo of five citrus fruits from Southern Italy: Physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization, 15(2). https://doi.org/10.1007/s11694-020-00787-5

  18. Liu, Y., Shi, J., & Langrish, T. A. G. (2006). Water-based extraction of pectin from flavedo and albedo of orange peels. Chemical Engineering Journal, 120(3). https://doi.org/10.1016/j.cej.2006.02.015

  19. Santanocito, A. M. and Elena Vismara (2015). Production of textile from citrus fruit. World Intellectual Property Organization, WO2015018711A1.

    Google Scholar 

  20. Mat Zain, N. F. (2014). Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Journal of Nutrition & Food Sciences, 05(01). https://doi.org/10.4172/2155-9600.1000334

  21. Sachidhanandham, A. (2020). Textiles from orange peel waste. Science and Technology Development Journal, 23(2). https://doi.org/10.32508/stdj.v23i2.1730

  22. Kieckens, E. (2021). Citrus fabric gives fashion industry a vitamin boost. Innovation Origins. https://innovationorigins.com/en/citrus-fabric-gives-fashion-industry-a-vitamin-boost/. (Accessed 31.10. 2022).

  23. Anonymous. The first fabric from oranges. Orange Fiber. https://orangefiber.it/process/. Accessed 01 Nov 2022.

  24. Press Release. (2021). Lenzing collaborates with Orange Fiber as part of new TENCEL™ Limited Edition initiative. Lenzing. https://www.lenzing.com/newsroom/press-releases/press-release/lenzing-collaborates-with-orange-fiber-as-part-of-new-tenceltm-limited-edition-initiative?fbclid=IwAR3cRyJL9gbAqWR_XEvWJ9OhvFhgp3PDDtkMG4JsYuXpRnWP_OGGp-h8z3w. (Accessed on 01.11.2022).

  25. Salvatore Ferragamo Responsible Passion. (2017). Orange Fiber – Green fashion inspiration. https://group.ferragamo.com/en/news/2017/orange+fiber. (Accessed on 27.01.2023).

  26. Anonymous. (2019). Orange Fiber: Sustainable fashion made of orange peel. Reset. https://en.reset.org/orange-fiber-sustainable-fashion-made-orange-peel-10142019/. (Accessed on 27.01.2023).

  27. Anonymous. Orange Fiber – All you need to know. Vesti la natura. https://www.vestilanatura.it/en/textile-fibers/artificial/orange-fiber/. (Accessed on 27.01.2023).

  28. D’Itria, E., & Colombi, C. (2022). Biobased innovation as a fashion and textile design must: A European perspective. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010570

  29. Orange Fiber. Impact. https://orangefiber.it/impact/. (Accessed on 27.01.2023).

  30. Jain, A. (2021). Orange Fiber – The fabric from fruit. Textile Value Chain. https://textilevaluechain.in/in-depth-analysis/orange-fiber-the-fabric-from-fruit/. (Accessed on 27.01.2023).

  31. Song, S., & Eunju, K. (2014). Sustainable fashion consumption and perception. In Global marketing conference, Singapore.

    Google Scholar 

  32. Gross, R. A., & Kalra, B. (2002). Biodegradable polymers for the environment. Science (1979), 297, 803–807.

    CAS  Google Scholar 

  33. Brown, A. J. (1886). On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions., 49, 432–439.

    Article  CAS  Google Scholar 

  34. Tonouchi, N., Tsuchida, T., Yoshinaga, F., Beppu, T., & Horinouchi, S. (1996). Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Bioscience, Biotechnology, and Biochemistry, 60(8), 1377–1379.

    Article  CAS  Google Scholar 

  35. Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology, 47(2), 107.

    CAS  Google Scholar 

  36. Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 219, 63–76. https://doi.org/10.1016/J.CARBPOL.2019.05.008

    Article  CAS  Google Scholar 

  37. Rani, M. U., & Appaiah, A. (2011). Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 61(4), 781–787. https://doi.org/10.1007/s13213-011-0196-7

    Article  CAS  Google Scholar 

  38. Hestrin, S., Aschner, M., & Mager, J. (1947). Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature, 159(4028), 64–65.

    Article  CAS  Google Scholar 

  39. Pourramezan, G. Z., Roayaei, A. M., & Qezelbash, Q. R. (2009). Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology, 8(1), 150–154.

    Article  CAS  Google Scholar 

  40. Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3(February). https://doi.org/10.3389/fsufs.2019.00007

  41. Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29(4), 189–195.

    Article  CAS  Google Scholar 

  42. Gu, J., & Catchmark, J. M. (2012). Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydrate Polymers, 88(2), 547–557. https://doi.org/10.1016/J.CARBPOL.2011.12.040

    Article  CAS  Google Scholar 

  43. Hu, Y., & Catchmark, J. (2010). Studies on sphere-like bacterial cellulose produced by Acetobacter xylinum under agitated culture. In American Society of Agricultural and Biological Engineers annual international meeting 2010, ASABE 2010 (pp. 1771–1781).

    Google Scholar 

  44. Cañas-Gutiérrez, A., Osorio, M., Molina-Ramírez, C., Arboleda-Toro, D., & Castro-Herazo, C. (2020). Bacterial cellulose: A biomaterial with high potential in dental and oral applications. Cellulose, 27(17), 9737–9754. https://doi.org/10.1007/s10570-020-03456-4

    Article  CAS  Google Scholar 

  45. Campano, A., Balea, C., Blanco, A., & Negro, C. (2016). Enhancement of the fermentation process and properties of bacterial cellulose: A review. Cellulose, 23, 57–91. https://doi.org/10.1007/s10570-015-0802-0

    Article  CAS  Google Scholar 

  46. Choi, C. N., Song, H. J., Kim, M. J., Chang, M. H., & Kim, S. J. (2009). Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor. Korean Journal of Chemical Engineering, 26(1). https://doi.org/10.1007/s11814-009-0021-1

  47. Lin, S. P., Hsieh, S. C., Chen, K. I., Demirci, A., & Cheng, K. C. (2014). Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose, 21(1). https://doi.org/10.1007/s10570-013-0136-8

  48. Lu, H., & Jiang, X. (2014). Structure and properties of bacterial cellulose produced using a trickling bed reactor. Applied Biochemistry and Biotechnology, 172(8). https://doi.org/10.1007/s12010-014-0795-4

  49. Cheng, K. C., Catchmark, J. M., & Demirci, A. (2011). Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 12(3). https://doi.org/10.1021/bm101363t

  50. Blanco Parte, F. G., et al. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397–414. https://doi.org/10.1080/07388551.2020.1713721

    Article  CAS  Google Scholar 

  51. Wasim, M. (2020). An overview of synthesized bacterial cellulose nanocomposites for biomedical applications. Biomedical Journal of Scientific & Technical Research, 27(2). https://doi.org/10.26717/bjstr.2020.27.004483

  52. Baptista, A., Ferreira, I., & Borges, J. (2013). Cellulose-based bioelectronic devices. In Cellulose – Medical, pharmaceutical and electronic applications. https://doi.org/10.5772/56721

  53. GarcĂ­a, C., & Prieto, M. A. (2019). Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microbial Biotechnology, 12(4). https://doi.org/10.1111/1751-7915.13306

  54. El-Gendi, H., Taha, T. H., Ray, J. B., & Saleh, A. K. (2022). Recent advances in bacterial cellulose: A low-cost effective production media, optimization strategies and applications, 29(14). Springer Netherlands. https://doi.org/10.1007/s10570-022-04697-1

  55. Ng, M. C. F., & Wang, W. (2015). A study of the receptivity to bacterial cellulosic pellicle for fashion. Research Journal of Textile and Apparel, 19(4). https://doi.org/10.1108/RJTA-19-04-2015-B007

  56. Ng, F. M. C., & Wang, P. W. (2016). Natural self-grown fashion from bacterial cellulose: A paradigm shift design approach in fashion creation. Design Journal, 19(6). https://doi.org/10.1080/14606925.2016.1208388

  57. Ng, A. (2017). Grown microbial 3D fiber art, ava: Fusion of traditional art with technology. In Proceedings – International symposium on wearable computers, ISWC (Vol. Part F130534). https://doi.org/10.1145/3123021.3123069

  58. Yim, S. M., Song, J. E., & Kim, H. R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59. https://doi.org/10.1016/j.procbio.2016.07.001

  59. Ghalachyan, A. & Karpova, E. (2018). Evaluation of consumer perceptions and acceptance of sustainable fashion products made of bacterial cellulose. https://dr.lib.iastate.edu/entities/publication/f57b30a1-76f4-49da-a846-e2ded809c548 (Accessed on 26.6.23)

  60. Chan, C. K., Shin, J., & Jiang, S. X. K. (2018). Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Clothing and Textiles Research Journal, 36(1). https://doi.org/10.1177/0887302X17737177

  61. Rathinamoorthy, R., Aarthi, T., Aksaya Shree, C. A., Haridharani, P., Shruthi, V., & Vaishnikka, R. L. (2021). Development and characterization of self -assembled bacterial cellulose nonwoven film. Journal of Natural Fibers, 18(11). https://doi.org/10.1080/15440478.2019.1701609

  62. Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2019). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31(5). https://doi.org/10.1108/IJCST-02-2019-0010

  63. Rathinamoorthy, R., Kiruba, T., Elango, R., & Boopathi, P. (2021). Optimization of glycerol treatment for improved flexibility of dried bacterial cellulose nonwoven fabric. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1960232

  64. Rathinamoorthy, R. (2022). Influence of drying method on the properties of bacterial cellulose nonwovens – Review on the textile and fashion application potential. Journal of Natural Fibers, 19(16), 12596–12613. https://doi.org/10.1080/15440478.2022.2073497

    Article  CAS  Google Scholar 

  65. Gorgieva, S., & TrÄŤek, J. (2019). Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9(10). https://doi.org/10.3390/nano9101352

  66. Zhong, C. (2020). Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.605374

  67. Ul-Islam, M., Ullah, M. W., Khan, S., & Park, J. K. (2020). Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean Journal of Chemical Engineering, 37(6). https://doi.org/10.1007/s11814-020-0524-3

  68. Forte, A., Dourado, F., Mota, A., Neto, B., Gama, M., & Ferreira, E. C. (2021). Life cycle assessment of bacterial cellulose production. International Journal of Life Cycle Assessment, 26(5). https://doi.org/10.1007/s11367-021-01904-2

  69. Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports, 7. https://doi.org/10.1038/srep41292

  70. Antinori, M. E., et al. (2021). Advanced mycelium materials as potential self-growing biomedical scaffolds. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-91572-x

    Article  CAS  Google Scholar 

  71. Karana, E., Blauwhoff, D., Hultink, E. J., & Camere, S. (2018). When the material grows: A case study on designing (with) mycelium-based materials. International Journal of Design, 12(2), 119.

    Google Scholar 

  72. Silverman, J. (2018). Development and testing of mycelium-based composite materials for shoe sole applications. University of Delaware. https://udspace.udel.edu/handle/19716/23768 (Accessed on 26.6.23)

  73. Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 187. https://doi.org/10.1016/j.matdes.2019.108397

  74. Kile, M. (2013). How to replace foam and plastic packaging with mushroom experiments. Al Jazeera America. http://america.aljazeera.com/watch/shows/techknow/blog/2013/9/15/how-to-replace-foamandplasticpackagingwithmushroomexperiments.html (Accessed on 20.3.23)

  75. Jones, M., et al. (2018). Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire and Materials, 42(7). https://doi.org/10.1002/fam.2637

  76. Javadian, A., Le Ferrand, H., Hebel, D. E., & Saeidi, N. (2020). Application of mycelium-bound composite materials in construction industry: A short review. SOJ Materials Science and Engineering, 1, 1.

    Article  Google Scholar 

  77. Silverman, J., Cao, H., & Cobb, K. (2020). Development of mushroom mycelium composites for footwear products. Clothing and Textiles Research Journal, 38(2). https://doi.org/10.1177/0887302X19890006

  78. Karana, E. (2022). Mycelium-based materials for product design. www.tudelft.nl. www.tudelft.nl/en/ide/research/research-labs/emerging-materials-lab/environmentally-sensitive-materials/mycelium-based-materials-for-product-design (Accessed on 21.3.23)

  79. Ecovative. (2022). https://www.ecovative.com/pages/images

  80. Ivanova, N. (2022). Mycelium + timber. http://www.ninelaivanova.co.uk/mycelium-timber/

  81. Deeg, K., Gima, Z., Smith, A., Stoica, O., & Kathy, T. (2017). Greener Solutions: Improving performance of mycelium-based leather. CIRED – Open Access Proceedings Journal. https://bcgctest.files.wordpress.com/2018/03/gs_2017_mycoworks_finalreport.pdf (Accessed on 26.6.23)

  82. Vallas, T., & Courard, L. (2017). Using nature in architecture: Building a living house with mycelium and trees. Frontiers of Architectural Research, 6(3), 318–328. https://doi.org/10.1016/j.foar.2017.05.003

    Article  Google Scholar 

  83. Ashton, E. G. (2018). Analysis of footwear development from the design perspective: Reduction in solid waste generation. Strategic Design Research Journal, 11(1). https://doi.org/10.4013/sdrj.2018.111.01

  84. Bizet, C., Desobry, S., Fanni, J., & Hardy, J. (1997). Composition and physical properties of the Penicillium camemberti mycelium. Le Lait (INRA Edition), 77(4), 461–466.

    Article  CAS  Google Scholar 

  85. Mazur, R. (2015). Mechanical properties of sheets comprised of mycelium: A paper engineering perspective. https://experts.esf.edu/view/pdfCoverPage?instCode=01SUNY_ESF&filePid=1356547820004826&download=trueSource (Accessed on 26.6.23)

  86. Khamrai, M., Banerjee, S. L., & Kundu, P. P. (2018). A sustainable production method of mycelium biomass using an isolated fungal strain Phanerochaete chrysosporium (accession no: KY593186): Its exploitation in wound healing patch formation. Biocatalysis and Agricultural Biotechnology, 16, 548–557. https://doi.org/10.1016/J.BCAB.2018.09.013

    Article  Google Scholar 

  87. Cartabia, M., et al. (2021). Collection and characterization of wood decay fungal strains for developing pure mycelium mats. Journal of Fungi, 7(12). https://doi.org/10.3390/jof7121008

  88. Livne, A., Wösten, H. A. B., Pearlmutter, D., & Gal, E. (2022). Fungal mycelium bio-composite acts as a CO2 -sink building material with low embodied energy. ACS Sustainable Chemistry & Engineering, 10(37), 12099–12106. https://doi.org/10.1021/acssuschemeng.2c01314

    Article  CAS  Google Scholar 

  89. Lebby, S. (2022). What is cactus leather? Is it sustainable? Tree Huggers. https://www.treehugger.com/what-is-cactus-leather-5271048 (Accessed on 26.6.23)

  90. Wright, F. C. (1908). Cactus leather. US Patent, US902359A.

    Google Scholar 

  91. Wright, F. C. (1908). Leather from cacti: Something new. The Plant World, 11(5), 99–102.

    Google Scholar 

  92. Doyle, M. (2022). What is Desserto cactus leather and is it sustainable? Ecocult. https://ecocult.com/desserto-cactus-leather-sustainable/ (Accessed on 26.6.23)

  93. Williams, S. (2022). Sustainable leather alternatives: A comparison of cactus leather mechanical properties. https://scholarworks.calstate.edu/downloads/jm214v95j (Accessed on 26.6.23)

  94. Meyer, M., Dietrich, S., Schulz, H., & Mondschein, A. (2021). Comparison of the technical performance of leather, artificial leather, and trendy alternatives. Coatings, 11, 226.

    Article  CAS  Google Scholar 

  95. Desserto. (2021). New favorite for luxury – Vegan cactus alternative to leather from Mexico. https://desserto.com.mx/home (Accessed on 26.6.23)

  96. Livingswood, J. (2021). Cactus leather: The complete guide. The Uptide. https://www.theuptide.com/cactus-leather/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathinamoorthy, R., Suvitha, L., Raja Balasaraswathi, S. (2023). Sustainable Technologies and Materials for Future Fashion. In: Muthu, S.S. (eds) Novel Sustainable Process Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-35451-9_5

Download citation

Publish with us

Policies and ethics