Skip to main content

Abstract

Mucuna pruriens, also known as Velvet beans and Cowhage plant (English name), is a medicinal plant. It’s a twining, climbing, annual herbaceous leguminous plant originally from southern China and eastern India. Its seeds are a source of proteins, lipids, dietary fibres, carbohydrates (primary metabolites) and minerals as well as flavonoids, alkaloids, glycosides, steroids, saponins, terpenoids and tannins (secondary metabolites). (L-Dopa), a starting material of dopamine is produced in the leaves as well as in the roots of M. pruriens. Various Alkaloids like prurienidine, prurienine, prurieninine have also been reported in M. pruriens extracts. In-addition, Linoleic, palmitic, stearic, oleic, decanoic, lauric, behenic, arachidic, and vernolic acids were found in the seeds. The medicinal applications of Mucuna pruriens include antioxidant, antidiabetic, antidepressant, anti-inflammatory, antimicrobial, anti-obesity etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siddhuraju, P., Becker, K., & Makkar, H. P. S. (2000). Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical Legume, Mucuna p ruriens Var. Utilis. Journal of Agricultural and Food Chemistry, 48(12), 6048–6060.

    Article  CAS  PubMed  Google Scholar 

  2. Janardhanan, K., Gurumoorthi, P., & Pugalenthi, M. (2003). Nutritional potential of five accessions of a South Indian tribal pulse, Mucuna pruriens var utilis I. The effect of processing methods on the content of l-dopa, phytic acid, and oligosaccharides. Tropical and subtropical agroecosystems, 1(2–3), 141–152.

    Google Scholar 

  3. Pugalenthi, M., Vadivel, V., & Siddhuraju, P. (2005). Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis-a review. Plant Foods for Human Nutrition, 60(4), 201–218.

    Article  CAS  PubMed  Google Scholar 

  4. Gurumoorthi, P., Pugalenthi, M., & Janardhanan, K. (2003). Nutritional potential of five accessions of a South indian tribal pulse Mucuna pruriens var utilis: ii. Investigations on total free phenolics, tannins, trypsin and chymotrypsin inhibitors, phytohaemagglutinins, and in vitro protein digestibility. Tropical and Subtropical Agroecosystems, 1(2–3), 153–158.

    Google Scholar 

  5. Rastogi, R. P., Mehrotra, B. N., Sinha, S., Pant, P., & Seth, R. (1990). Compendium of Indian medicinal plants: 1985–1989 (Vol. 4). Central Drug Research Institute and Publications & Information Directorate.

    Google Scholar 

  6. Okoli, B. J. (2015). In vitro anthelmintic activity of Mucuna pruriens (DC) and Canarium schweinfurthii (Engl) on Ascaris suum. Open Access Library Journal, 2(02), 1–8.

    Google Scholar 

  7. Sahaji, P. (2011). Acute oral toxicity of Mucuna pruriens in albino mice. International Research Journal of Pharmacy, 2(5), 162–163.

    Google Scholar 

  8. Chakoma, I., Manyawu, G. J., Gwiriri, L., Moyo, S., & Dube, S. (2016). The agronomy and use of Mucuna pruriens in smallholder farming systems in southern Africa. ILRI Extension Brief.

    Google Scholar 

  9. Oudhia, P. (2001, January). My experiences with world’s top ten Indian medicinal plants: Glimpses of research at farmer’s field in Chhattisgarh (India). In Abstract. Workshop cum Seminar on Sustainable Agriculture for 21st Century (pp. 20–21). IGAU.

    Google Scholar 

  10. Oudhia, P., & Tripathi, R. S. (2001, April). The possibilities of commercial cultivation of rare medicinal plants in Chhattisgarh (India). In Abstract. VII national science conference, Bhartiya Krishi Anusandhan Samittee (pp. 12–14). Directorate of Cropping System Research.

    Google Scholar 

  11. Thomas, L., & Palaniappan, S. (1998). Seed production of velvet beans, sunnhemp and pillipesara as influenced by plant density and phosphorus application. Madras Agricultural Journal, 85, 35–37.

    Article  Google Scholar 

  12. Kumwenda, J. D., Gilbert, R., Waddington, S., Murwira, H., Hikwa, D., & Tagwira, F. (1998). Biomass production by legume green manures on exhausted soils in Malawi: A soil fertility network trial. In Soil fertility research for maize-based farming systems in Malawi and Zimbabwe. Harare (pp. 85–86). SFNET and CIMMYT.

    Google Scholar 

  13. Houngnandan, P., Sanginga, N., Okogun, A., Vanlauwe, B., & Merckx, R. (2001). Van Cleemput, O., Assessment of soil factors limiting growth and establishment of Mucuna in farmers’ fields in the derived savanna of the Benin Republic. Biology and Fertility of Soils, 33(5), 416–422.

    Article  CAS  Google Scholar 

  14. Wulijarni-Soetjipto, N., & Maligalig, R. (1997). Mucuna pruriens (L.) DC. cv. group Utilis. Plant resources of South-East Asia (PROSEA), 11, 199–203.

    Google Scholar 

  15. Wolf, B., & Snyder, G. (2003). Sustainable soils: The place of organic matter in sustaining soils and their productivity. CRC Press.

    Book  Google Scholar 

  16. Eilittä, M., & Carsky, R. (2003). Efforts to improve the potential of Mucuna as a food and feed crop: background to the workshop. Tropical and Subtropical Agroecosystems, 1(2–3), 47–55.

    Google Scholar 

  17. Pengelly, B., Whitbread, A., Mazaiwana, P., & Mukombe, N. (2003). Tropical forage research for the future-better use of research resources to deliver adoption and benefits to farmers. Tropical grasslands, 37(4), 207–216.

    Google Scholar 

  18. Farooqi, A. A., & Sreeramu, B. (2004). Cultivation of medicinal and aromatic crops. Universities Press.

    Google Scholar 

  19. Muralia, S., & Pathak, A.(2003). Database of medicinal plant used in ayurveda. In Medicinal and aromatic plants cultivation and uses (pp. 185–187).

    Google Scholar 

  20. Janardhanan, V. V. K. (2000). Nutritional and anti-nutritional composition of velvet bean: an under-utilized food legume in South India. International Journal of Food Sciences and Nutrition, 51(4), 279–287.

    Article  PubMed  Google Scholar 

  21. Shanmugavel, G., & Krishnamoorthy, G. (2018). Nutraceutical and phytochemical investigation of Mucuna pruriens seed. Journal of Pharmaceutical Innovation, 7, 273–278.

    CAS  Google Scholar 

  22. Bell, E. A., & Janzen, D. H. (1971). Medical and ecological considerations of L-dopa and 5-HTP in seeds. Nature, 229(5280), 136–137.

    Article  CAS  PubMed  Google Scholar 

  23. Damodaran, M., & Ramaswamy, R. (1937). Isolation of l-3: 4-dihydroxyphenylalanine from the seeds of Mucuna pruriens. Biochemical Journal, 31(12), 2149–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daxenbichler, M. E., VanEtten, C. H., Hallinan, E. A., Earle, F. R., & Barclay, A. S. (1971). Seeds as sources of L-DOPA. Journal of Medicinal Chemistry, 14(5), 463–465.

    Article  CAS  PubMed  Google Scholar 

  25. Majumdar, D. N., & Zalani, C. D. (1953). Mucuna pruriens DC, Alkaloidal constituents III, isolation of water soluble alkaloids and a study of their chemical and physiological characterization. The Indian Journal of Pharmacy, 5, 62–65.

    Google Scholar 

  26. Mehta, J. C., & Majumdar, D. N. (1994). Indian medicinal plants-V. Indian Journal of Pharmacy and Pharmacology, 6, 92–94.

    Google Scholar 

  27. Majumdar, D. N., & Santra, D. K. (1953). The Mucuna pruriens DC. Part II. Isolation of water insoluble alkaloids. Indian Journal of Pharmacy and Pharmacology, 15, 60–61.

    Google Scholar 

  28. Pant, R., Nair, C. R., Singh, K. S., & Koshti, G. S. (1974). Amino acid composition of some wild legumes. Current Science, 43, 235–239.

    CAS  Google Scholar 

  29. Niranjan, G. S., & Katiyar, S. K. (1979). Chemical-composition of some legumes. Journal of the Indian Chemical Society, 56(8), 822–823.

    CAS  Google Scholar 

  30. Hasan, S. Q., MRK, S., & SM, O. (1980). Epoxy acids of Mucuna prurita seed oil.

    Google Scholar 

  31. Panikkar, K. R., Majella, V. L., & Pillai, P. M. (1987). Lecithin from Mucuna pruriens. Planta Medica, 53(05), 503–503.

    Article  CAS  PubMed  Google Scholar 

  32. Mackenbach, J. P., Stirbu, I., Roskam, A. J. R., Schaap, M. M., Menvielle, G., Leinsalu, M., & Kunst, A. E. (2008). Socioeconomic inequalities in health in 22 European countries. New England Journal of Medicine, 358(23), 2468–2481.

    Article  CAS  PubMed  Google Scholar 

  33. Deokar, G., Kakulte, H., & Kshirsagar, S. (2016). Phytochemistry and pharmacological activity of Mucuna pruriens: A review. Pharmaceutical and Biological Evaluations, 3(1), 50–59.

    Google Scholar 

  34. Vargas-Ayala, R., Rodrı́guez-Kábana, R., Morgan-Jones, G., McInroy, J. A., & Kloepper, J. W. (2000). Shifts in soil microflora induced by velvetbean (Mucuna deeringiana) in cropping systems to control root-knot nematodes. Biological Control, 17(1), 11–22.

    Article  Google Scholar 

  35. Siddhuraju, P., Vijayakumari, K., & Janardhanan, K. (1996). Chemical composition and protein quality of the little-known legume, velvet bean (Mucuna pruriens (L.) DC.). Journal of Agricultural and Food Chemistry, 44(9), 2636–2641.

    Article  CAS  Google Scholar 

  36. Rakshit, S., & Majumdar, D. N. (1956). Mucuna pruriens DC. Part V. Alkaloidal constituents and their characterization. The Indian Journal of Pharmacy, 18, 285–287.

    Google Scholar 

  37. Ghosal, S., Singh, S., & Bhattacharya, S. K. (1971). Alkaloids of Mucuna pruriens chemistry and pharmacology. Planta Medica, 19(01), 279–284.

    Article  CAS  Google Scholar 

  38. Wang, C., & Mosberg, H. I. (1995). Synthesis of a novel series of topographically constrained amino acids: Benzo-1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acids. Tetrahedron Letters, 36(21), 3623–3626.

    Article  CAS  Google Scholar 

  39. Kazmierski, W., & Hruby, V. J. (1988). A new approach to receptor ligand design: synthesis and conformation of a new class of potent and highly selective μ opioid antagonists utilizing tetrahydroisoouinoline carroxylic acid. Tetrahedron, 44(3), 697–710.

    Article  CAS  Google Scholar 

  40. Murthy, K., & Mishra, S. (2009). Quantification of β-Sitosterol from Mucuna pruriens by TLC. Chromatographia, 69(1), 183–186.

    Article  CAS  Google Scholar 

  41. Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: evidence and mechanism of action. The Journal of Nutrition, 130(9), 2127–2130.

    Article  CAS  PubMed  Google Scholar 

  42. Awad, A. B., Gan, Y., & Fink, C. S. (2000). Effect of β-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells. Nutrition and Cancer, 36(1), 74–78.

    Article  CAS  PubMed  Google Scholar 

  43. Law, M. (2000). Plant sterol and stanol margarines and health. BMJ, 320(7238), 861–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kasture, V. S., Katti, S. A., Mahajan, D., Wagh, R., Mohan, M., & Kasture, S. B. (2009). Antioxidant and antiparkinson activity of gallic acid derivatives. Pharmacology, 1, 385–395.

    Google Scholar 

  45. Lu, Z., Nie, G., Belton, P. S., Tang, H., & Zhao, B. (2006). Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, 48(4), 263–274.

    Article  CAS  PubMed  Google Scholar 

  46. Kavitha, C., & Thangamani, C. (2014). Amazing bean †œMucuna pruriensâ€: A comprehensive review. Journal of Medicinal Plants Research, 8(2), 138–143.

    Article  CAS  Google Scholar 

  47. Wang, J., Xu, D., Shen, L., Zhou, J., Lv, X., Ma, H., et al. (2021). Anti-inflammatory and analgesic actions of bufotenine through inhibiting lipid metabolism pathway. Biomedicine & Pharmacotherapy, 140, 111749.

    Article  CAS  Google Scholar 

  48. Banerjee, S., Li, Y., Wang, Z., & Sarkar, F. H. (2008). Multi-targeted therapy of cancer by genistein. Cancer Letters, 269(2), 226–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verdrengh, M., Jonsson, I. M., Holmdahl, R., & Tarkowski, A. (2003). Genistein as an anti-inflammatory agent. Inflammation Research, 52(8), 341–346.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537.

    Article  PubMed  Google Scholar 

  51. Moura, D. J., Richter, M. F., Boeira, J. M., Pêgas Henriques, J. A., & Saffi, J. (2007). Antioxidant properties of β-carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis, 22(4), 293–302.

    Article  CAS  PubMed  Google Scholar 

  52. Kasture, S., Mohan, M., & Kasture, V. (2013). Mucuna pruriens seeds in treatment of Parkinson’s disease: Pharmacological review. Oriental Pharmacy and Experimental Medicine, 13(3), 165–174.

    Article  Google Scholar 

  53. Huang, L. Z., Campos, C., Ly, J., Carroll, F. I., & Quik, M. (2011). Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology, 60(6), 861–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quik, M., Huang, L. Z., Parameswaran, N., Bordia, T., Campos, C., & Perez, X. A. (2009). Multiple roles for nicotine in Parkinson’s disease. Biochemical Pharmacology, 78(7), 677–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhaskar, A., & Nithya, V. (2021). Phytochemical evaluation by GC-MS and antihyperglycemic activity of Mucuna pruriens on streptozotocin induced diabetes in rats. Journal of Chemical and Pharmaceutical Research, 3(5), 689–696.

    Google Scholar 

  56. Huang, Z. R., Lin, Y. K., & Fang, J. Y. (2009). Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules, 14(1), 540–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Senthilkumar, S., Devaki, T., Manohar, B. M., & Babu, M. S. (2006). Effect of squalene on cyclophosphamide-induced toxicity. Clinica Chimica Acta, 364(1–2), 335–342.

    Article  CAS  Google Scholar 

  58. Sridhar, K. R., & Bhat, R. (2007). Agrobotanical, nutritional and bioactive potential of unconventional legume–Mucuna. Livestock Research for Rural Development, 19(9), 126–130.

    Google Scholar 

  59. Zeevalk, G. D., Razmpour, R., & Bernard, L. P. (2008). Glutathione and Parkinson’s disease: is this the elephant in the room? Biomedicine & Pharmacotherapy, 62(4), 236–249.

    Article  CAS  Google Scholar 

  60. Jungwirth, N., Haeberle, L., Schrott, K. M., Wullich, B., & Krause, F. S. (2008). Serotonin used as prognostic marker of urological tumors. World Journal of Urology, 26(5), 499–504.

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, K. A., Conn, P. J., & Niswender, C. M. (2009). Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 8(6), 475–491.

    CAS  Google Scholar 

  62. Hernández-Orihuela, A. L., Castro-Cerritos, K. V., López, M. G., & Martínez-Antonio, A. (2022). Compounds characterization of a Mucuna Seed Extract: L-Dopa, Arginine, Stizolamine, and Some Fructooligosaccharides. Compounds, 3(1), 1–16.

    Article  Google Scholar 

  63. Ushie, O. A., Iyen, S. I., Abeng, F. E., Azuaga, T. I., Okpaegbe, U. C., & Aikhoje, E. F. (2019). Quantification of alkaloids, flavonoids and saponins in Physalis angulata and Mucuna pruriens.

    Google Scholar 

  64. Riahi, G., Morissette, M., Parent, M., & Di Paolo, T. (2011). Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. European Journal of Neuroscience, 33(10), 1823–1831.

    Article  PubMed  Google Scholar 

  65. Obata, T. (2003). Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Brain Research, 978(1–2), 241–244.

    Article  CAS  PubMed  Google Scholar 

  66. Siddhuraju, P., & Becker, K. (2005). Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicted glycemic index of differentially processed mucuna beans (Mucuna pruriens var. utilis): an under-utilised legume. Food Chemistry, 91(2), 275–286.

    Article  CAS  Google Scholar 

  67. Caius, J. F. (1989). Medicinal and poisonous legumes of India. Scientific Publishers.

    Google Scholar 

  68. Mandal, P., Babu, S. S., & Mandal, N. C. (2005). Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia, 76(5), 462–465.

    Article  CAS  PubMed  Google Scholar 

  69. Misra, L., & Wagner, H. (2007). Extraction of bioactive principles from Mucuna pruriens seeds. Indian Journal of Biochemistry & Biophysics, 44(1), 56–60.

    CAS  Google Scholar 

  70. Vadivel, V., & Pugalenthi, M. (2008). Removal of antinutritional/toxic substances and improvement in the protein digestibility of velvet bean (Mucuna pruriens) seeds during processing. Journal of Food Science and Technology-Mysore, 45(3), 242–246.

    CAS  Google Scholar 

  71. Mohan, V. R., & Janardhanan, K. (1995). Chemical analysis and nutritional assessment of lesser known pulses of the genus, Mucuna. Food Chemistry, 52(3), 275–280.

    Article  CAS  Google Scholar 

  72. Flores, M., Eilitta, M. C., & Myhrman, R. (2002). Food and feed from Mucuna: current uses and the way forward (No. 633.33 F663f Ej. 1 019782). CIDICCO.

    Google Scholar 

  73. Diallo, O. K., Kante, S., Myhrman, R., Soumah, M., Cisse, N. Y., & Berhe, T. (2000, April). Increasing farmer adoption of Mucuna pruriens as human food and animal feed in the Republic of Guinea. In International workshop on food and feed from Mucuna, proceedings. Tegucigalpa (pp. 60–72).

    Google Scholar 

  74. Lim, T. K. (2012). Mucuna pruriens. In Edible medicinal and non-medicinal plants (pp. 779–797). Springer.

    Chapter  Google Scholar 

  75. Carew, L. B., & Gernat, A. G. (2006). Use of velvet beans, Mucuna spp., as a feed ingredient for poultry: a review. World’s Poultry Science Journal, 62(1), 131–144.

    Article  Google Scholar 

  76. Jimoh, M. A., Idris, O. A., & Jimoh, M. O. (2020). Cytotoxicity, phytochemical, antiparasitic screening, and antioxidant activities of Mucuna pruriens (Fabaceae). Plants, 9(9), 1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ishmayana, S., Malini, D. M., & Soedjanaatmadja, U. M. (2022). Nutritional Content and The Activities of L-Dopa (L-3, 4-Dihydoxyphenyalanine) from Mucuna pruriens L. DC Seeds of Central Java Accession. Arabian Journal of Chemistry, 16, 104390.

    Google Scholar 

  78. Biswas, S., Mukherjee, A., Mallick, U. K., Ghosh, G., & De, B. (2010). Cultured callus and L-DOPA. Indian Drugs, 47, 12.

    Google Scholar 

  79. Dhanani, T., Singh, R., Shah, S., Kumari, P., & Kumar, S. (2015). Comparison of green extraction methods with conventional extraction method for extract yield, L-DOPA concentration and antioxidant activity of Mucuna pruriens seed. Green Chemistry Letters and Reviews, 8(2), 43–48.

    Article  CAS  Google Scholar 

  80. Chester, K., Zahiruddin, S., Ahmad, A., Khan, W., Paliwal, S., & Ahmad, S. (2019). Bioautography-based identification of antioxidant metabolites of Solanum nigrum L. and exploration its hepatoprotective potential against D-galactosamine-induced hepatic fibrosis in rats. Pharmacognosy Magazine, 15(62), 104.

    CAS  Google Scholar 

  81. Agbafor, K. N., & Nwachukwu, N. (2011). Phytochemical analysis and antioxidant property of leaf extracts of. Vitex Doniana. Biochemistry Research International, 2011, 459839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martínez-Leo, E. E., Martín-Ortega, A. M., Acevedo-Fernández, J. J., Moo-Puc, R., & Segura-Campos, M. R. (2019). Peptides from Mucuna pruriens L., with protection and antioxidant in vitro effect on HeLa cell line. Journal of the Science of Food and Agriculture, 99(8), 4167–4173.

    Article  PubMed  Google Scholar 

  83. Rathi, S. S., Grover, J. K., & Vats, V. (2002). The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism. Phytotherapy Research, 16(3), 236–243.

    Article  CAS  PubMed  Google Scholar 

  84. Silva, F. R. M. B., Szpoganicz, B., Pizzolatti, M. G., Willrich, M. A. V., & de Sousa, E. (2002). Acute effect of Bauhinia forficata on serum glucose levels in normal and alloxan-induced diabetic rats. Journal of Ethnopharmacology, 83(1–2), 33–37.

    Article  PubMed  Google Scholar 

  85. Majekodunmi, S. O., Oyagbemi, A. A., Umukoro, S., & Odeku, O. A. (2011). Evaluation of the anti–diabetic properties of Mucuna pruriens seed extract. Asian Pacific Journal of Tropical Medicine, 4(8), 632–636.

    Article  PubMed  Google Scholar 

  86. Rajesh, R., Singh, S. A., Vaithy, K. A., Manimekalai, K., Kotasthane, D., & Rajasekar, S. S. (2016). The effect of Mucuna pruriens seed extract on pancreas and liver of diabetic wistar rats. International Journal of Current Research and Review, 8(4), 61.

    CAS  Google Scholar 

  87. Bhaskar, A., & Nithya, V. (2011). Phytochemical evaluation by GC-MS and antihyperglycemic activity of Mucuna pruriens on streptozotocin induced diabetes in rats. Journal of Chemical and Pharmaceutical Research, 3(5), 675–684.

    Google Scholar 

  88. Ravikumar, P., & Jeyam, M. (2019). Antidepressant activity and HPTLC fingerprinting of stearic acid in different days of wheat seedlings. Grain & Oil Science and Technology, 2(1), 6–10.

    Article  Google Scholar 

  89. Patel, J. S., & Galani, V. J. (2013). Investigation of noradrenaline and serotonin mediated antidepressant action of Mucuna pruriens (L) DC seeds using various experimental models. Oriental Pharmacy and Experimental Medicine, 13(2), 143–148.

    Article  Google Scholar 

  90. Rana, D. G., & Galani, V. J. (2014). Dopamine mediated antidepressant effect of Mucuna pruriens seeds in various experimental models of depression. Ayu, 35(1), 90.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Avoseh, O. N., Ogunwande, I. A., Ojenike, G. O., & Mtunzi, F. M. (2020). Volatile composition, toxicity, analgesic, and anti-inflammatory activities of Mucuna pruriens. Natural Product Communications, 15(7), 1934578X20932326.

    Article  CAS  Google Scholar 

  92. Javed, N., Alam, S. S., Subhani, H., Akhtar, M. S., & Khan, A. H. (2010). Evaluation of anti-inflammatory activity of Mucuna pruriens Linn. seeds. Proceeding SZPGMI, 24, 97–102.

    Google Scholar 

  93. Thangavelu, L., Rajeshkumar, S., Arivarasu, L., & Aditya, B. S. (2021). Antioxidant and Antiinflammatory Activity of Titanium Dioxide Nanoparticles Synthesised Using Mucuna pruriens. Journal of Pharmaceutical Research International, 33, 414–422.

    Google Scholar 

  94. Anushya, P., Geetha, R. V., & Rajesh Kumar, S. (2021). Evaluation of Anti Inflammatory and Cytotoxic Effect of Copper Nanoparticles Synthesised Using Seed Extract of Mucuna pruriens. Journal of Pharmaceutical Research International, 33, 816–824.

    Article  Google Scholar 

  95. Agarwal, H., Menon, S., & Shanmugam, V. K. (2020). Functionalization of zinc oxide nanoparticles using Mucuna pruriens and its antibacterial activity. Surfaces and Interfaces, 19, 100521.

    Article  CAS  Google Scholar 

  96. Gupta, S., & Saxena, U. (2022). Ethnopharmacology and its phytochemical investigation of Mucuna Pruriens seed: A comprehensive review. International Research Journal of Modernization in Engineering Technology and Science, 4(07), 3366–3375.

    Google Scholar 

  97. Shanmugavel, G., & Krishnamoorthy, G. (2018). Nutraceutical and phytochemical investigation of Mucuna pruriens seed. Pharma Innov, 7, 273–278.

    CAS  Google Scholar 

  98. Guerranti, R., Aguiyi, J. C., Errico, E., Pagani, R., & Marinello, E. (2001). Effects of Mucuna pruriens extract on activation of prothrombin by Echis carinatus venom. Journal of Ethnopharmacology, 75(2–3), 175–180.

    Article  CAS  PubMed  Google Scholar 

  99. Shekins, O. O., Anyanwu, G. O., Nmadu, P. M., & Olowoniyi, O. D. (2014). Anti-venom activity of Mucuna pruriens leaves extract against cobra snake (Naja hannah) venom. International Journal of Biochemistry Research & Review, 4(6), 470–480.

    Article  Google Scholar 

  100. Guerranti, R., Ogueli, I. G., Bertocci, E., Muzzi, C., Aguiyi, J. C., Cianti, R., et al. (2008). Proteomic analysis of the pathophysiological process involved in the antisnake venom effect of Mucuna pruriens extract. Proteomics, 8(2), 402–412.

    Article  CAS  PubMed  Google Scholar 

  101. Javed, N., Alam, S. S., Subhani, H., Akhtar, M. S., & Khan, A. H. (2011). Evaluation of Analgesic Activity of Isolated Flavonoids from Mucuna pruriens Seeds. Proceeding SZPGMI, 25(2), 91–94.

    Google Scholar 

  102. Singh, S., Sachan, A., Singh, H., Shankar, P., Kumar, D., Sachan, A. K., et al. (2015). Study Of Analgesic Activity Of Mucuna pruriens Extract On Swiss Albino Mice. World Journal of Pharmaceutical and Medical Research, 4(5), 1124–1132.

    Google Scholar 

  103. Chooi, Y. C., Ding, C., & Magkos, F. (2019). The epidemiology of obesity. Metabolism, 92, 6–10.

    Article  CAS  PubMed  Google Scholar 

  104. Sah, S. P., Singh, B., Choudhary, S., & Kumar, A. (2016). Animal models of insulin resistance: A review. Pharmacological Reports, 68(6), 1165–1177.

    Article  CAS  PubMed  Google Scholar 

  105. Vekic, J., Zeljkovic, A., Stefanovic, A., Jelic-Ivanovic, Z., & Spasojevic-Kalimanovska, V. (2019). Obesity and dyslipidemia. Metabolism, 92, 71–81.

    Article  CAS  PubMed  Google Scholar 

  106. Rojas-Osornio, S. A., Cruz-Hernández, T. R., Drago-Serrano, M. E., & Campos-Rodríguez, R. (2019). Immunity to influenza: impact of obesity. Obesity Research & Clinical Practice, 13(5), 419–429.

    Article  Google Scholar 

  107. Delgado, I., Huet, L., Dexpert, S., Beau, C., Forestier, D., Ledaguenel, P., et al. (2018). Depressive symptoms in obesity: relative contribution of low-grade inflammation and metabolic health. Psychoneuroendocrinology, 91, 55–61.

    Article  CAS  PubMed  Google Scholar 

  108. Nicolas, N. Y., Armand, A. B., Edith, D. M. J., Dimitry, M. Y., & Thérèse, B. A. M. (2022). Effects of Mucuna Milk (Mucuna pruriens L.) on Body Weight and Serum Biochemistry in Rats Fed Hyperlipidaemic Diet. European Journal of Nutrition & Food Safety, 14, 43–57.

    Google Scholar 

  109. Tavares, R. L., de Araújo Vasconcelos, M. H., Dorand, V. A. M., Junior, E. U. T., Toscano, L. D. L. T., de Queiroz, R. T., et al. (2021). Mucuna pruriens treatment shows anti-obesity and intestinal health effects in obese rats. Food & Function, 12(14), 6479–6489.

    Article  CAS  Google Scholar 

  110. Suresh, S., Prithiviraj, E., & Prakash, S. (2009). Dose-and time-dependent effects of ethanolic extract of Mucuna pruriens Linn. seed on sexual behaviour of normal male rats. Journal of Ethnopharmacology, 122(3), 497–501.

    Article  PubMed  Google Scholar 

  111. Muthu, K., & Krishnamoorthy, P. (2011). Evaluation of androgenic activity of Mucuna pruriens in male rats. African Journal of Biotechnology, 10(66), 15017–15019.

    Article  CAS  Google Scholar 

  112. Mutwedu, V. B., Ayagirwe, R. B. B., Bacigale, S. B., Mwema, L. M., Butseme, S., Kashosi, T., et al. (2019). Effect of dietary inclusion of small quantities of Mucuna pruriens seed meal on sexual behavior, semen characteristics, and biochemical parameters in rabbit bucks (Oryctolagus cuniculus). Tropical Animal Health and Production, 51(5), 1195–1202.

    Article  CAS  PubMed  Google Scholar 

  113. Suresh, S., & Prakash, S. (2012). Effect of Mucuna pruriens (Linn.) on sexual behavior and sperm parameters in streptozotocin-induced diabetic male rat. The Journal of Sexual Medicine, 9(12), 3066–3078.

    Article  PubMed  Google Scholar 

  114. Vaidya, A. B., Rajgopalan, T. G., Mankodi, N. A., Antarkar, D. S., Tathed, P. S., Purohit, A. V., & Wadia, N. H. (1978). Treatment of Parkinson’s disease with the cowhage plant-Mucuna pruriens Bak. Neurology India, 26(4), 171–176.

    CAS  PubMed  Google Scholar 

  115. Nagashayana, N., Sankarankutty, P., Nampoothiri, M. R. V., Mohan, P. K., & Mohanakumar, K. P. (2000). Association of L-DOPA with recovery following Ayurveda medication in Parkinson’s disease. Journal of the Neurological Sciences, 176(2), 124–127.

    Article  CAS  PubMed  Google Scholar 

  116. Mahajani, S. S., Doshi, V. J., Parikh, K. M., & Manyam, B. V. (1996). Bioavailability of l-DOPA from HP-200—a Formulation of Seed Powder of Mucuna pruriens (Bak): a Pharmacokinetic and Pharmacodynamic Study. Phytotherapy Research, 10(3), 254–256.

    Article  CAS  Google Scholar 

  117. Siddhuraju, P., & Becker, K. (2001). Rapid reversed-phase high performance liquid chromatographic method for the quantification of L-Dopa (L-3, 4-dihydroxyphenylalanine), non-methylated and methylated tetrahydroisoquinoline compounds from Mucuna beans. Food Chemistry, 72(3), 389–394.

    Article  CAS  Google Scholar 

  118. Misra, L., & Wagner, H. (2004). Alkaloidal constituents of Mucuna pruriens seeds. Phytochemistry, 65(18), 2565–2567.

    Article  CAS  PubMed  Google Scholar 

  119. Tripathi, Y. B., & Upadhyay, A. K. (2001). Antioxidant property of Mucuna pruriens Linn. Current Science, 80(11), 1377–1378.

    Google Scholar 

  120. Spencer, J. P., Jenner, A., Butler, J., Aruoma, O. I., Dexter, D. T., Jenner, P., & Halliwell, B. (1996). Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopamine in vitro: implications for Parkinson’s disease. Free Radical Research, 24(2), 95–105.

    Article  CAS  PubMed  Google Scholar 

  121. Caruana, M., Högen, T., Levin, J., Hillmer, A., Giese, A., & Vassallo, N. (2011). Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Letters, 585(8), 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  122. Pathania, R., Chawla, P., Khan, H., Kaushik, R., & Khan, M. A. (2020). An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3. Biotech, 10(6), 1–15.

    Google Scholar 

  123. Cassani, E., Cilia, R., Laguna, J., Barichella, M., Contin, M., Cereda, E., Isaias, I. U., Sparvoli, F., Akpalu, A., & Budu, K. O. (2016). Mucuna Pruriens for Parkinson’s Disease: Low-Cost Preparation Method, Laboratory Measures and Pharmacokinetics Profile. Journal of the Neurological Science, 365, 175–180.

    Article  CAS  Google Scholar 

  124. Yadav, S. K., Prakash, J., Chouhan, S., Westfall, S., Verma, M., Singh, T. D., & Singh, S. P. (2014). Comparison of the Neuroprotective Potential of Mucuna Pruriens Seed Extract with Estrogen in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced PD Mice Model. Neurochemistry International, 65, 1–13.

    Article  CAS  PubMed  Google Scholar 

  125. Lohray, B. B. (1992). Cyclic sulfites and cyclic sulfates: epoxide like synthons. Synthesis, 1992(11), 1035–1052.

    Article  Google Scholar 

  126. Byun, H.-S., He, L., & Bittman, R. (2000). Cyclic sulfites and cyclic sulfates in organic synthesis. Tetrahedron, 37(56), 7051–7091.

    Article  Google Scholar 

  127. Sayyed, I. A., & Sudalai, A. (2004). Asymmetric synthesis of l-DOPA and (R)-selegiline via, OsO4-catalyzed asymmetric dihydroxylation. Tetrahedron: Asymmetry, 15(19), 3111–3116.

    Article  CAS  Google Scholar 

  128. Kulma, A., & Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433–440.

    Article  CAS  Google Scholar 

  129. Kong, K. H., Lee, J. L., Park, H. J., & Cho, S. H. (1998). Purification and characterization of the tyrosinase isozymes of pine needles. IUBMB Life, 45(4), 717–724.

    Article  CAS  Google Scholar 

  130. Steiner, U., Schliemann, W., & Strack, D. (1996). Assay for tyrosine hydroxylation activity of tyrosinase from betalain-forming plants and cell cultures. Analytical Biochemistry, 238(1), 72–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matloob Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, S., Rafiq, A., Ahmad, M., Naqvi, S.A.R., AL-Huqail, A.A. (2023). Cowhage. In: Zia-Ul-Haq, M., Abdulkreem AL-Huqail, A., Riaz, M., Farooq Gohar, U. (eds) Essentials of Medicinal and Aromatic Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-35403-8_7

Download citation

Publish with us

Policies and ethics