Skip to main content

Requirements Management for Flow Production of Precast Concrete Modules

  • Conference paper
  • First Online:
Advances in Information Technology in Civil and Building Engineering (ICCCBE 2022)

Abstract

For efficient and sustainable use of precast concrete modules, all relevant information must be collected digitally and in real-time and made available in digital twins. Digitization should be carried out in such a way that continuous quality management is possible at all times. This also includes whether the produced concrete modules also meet all the requirements from the initial design. For example, the precast concrete parts must be able to absorb certain forces or have precise connections and joining options. The Requirements Interchange Format (ReqIF) can be used to describe requirements digitally and exchange them between different IT systems and stakeholders. The creation of automated quality control (QC) protocol for the flow production process can be implemented based on this already structured and formalized requirements format. In this paper, the Asset Administration Shell (AAS) from the context of Industry 4.0 is enhanced to enable the formal description and automated verification of requirements for precast concrete based on the ReqIF interchange format. For this purpose, a smart service integrates the ReqIF-compliant requirements into an AAS submodel. Via this smart service, a mapping assistance tool lets stakeholders assign measurable properties of the precast concrete modules to the requirements, thus enabling an automated quality check. The presented approach is validated based on a virtual precast concrete wall for which a chain of linked requirements is described and automatically checked within the scope of a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grieves M (2016). Origins of the Digital Twin Concept

    Google Scholar 

  2. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W (2018) Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51:1016–1022

    Article  Google Scholar 

  3. Davila Delgado JM, Oyedele L (2021) Digital twins for the built environment: learning from conceptual and process models in manufacturing. Adv Eng Inform 49:101332

    Article  Google Scholar 

  4. Shahzad M, Shafiq MT, Douglas D, Kassem M (2022) Digital twins in built environments: an investigation of the characteristics, applications, and challenges. Buildings 12:120

    Article  Google Scholar 

  5. Khajavi SH, Motlagh NH, Jaribion A, Werner LC, Holmstrom J (2019) Digital twin: vision, benefits, boundaries, and creation for buildings. IEEE Access 7:147406–147419

    Article  Google Scholar 

  6. Plattform Industrie 4.0. Diskusspapier - Verwaltungsschale in der Praxis (2019)

    Google Scholar 

  7. Plattform Industrie 4.0. Diskussionspapier I4.0-Sprache - Vokabular, Nachrichtenstruktur und semantische Interaktionsprotokolle der I4.0-Sprache (2018)

    Google Scholar 

  8. Zave P (1995) In: Proceedings of 1995 IEEE international symposium on requirements engineering (RE 1995) (IEEE Comput. Soc. Press), pp 214–216

    Google Scholar 

  9. Nuseibeh B, Easterbrook S (2000) In: Proceedings of the conference of the future of software engineering, pp 35–46

    Google Scholar 

  10. Fernie S, Green SD, Weller SJ (2003) Dilettantes, discipline and discourse: requirements management for construction. Eng Constr Archit Manag 10:354–367

    Article  Google Scholar 

  11. Kamara JM, Anumba CJ, Nosa FO (2002) Evbuomwan. Capturing client requirements in construction projects (Thomas Telford Ltd)

    Google Scholar 

  12. Yu ATW, Chan EH (2010) Requirements management in the architecture, engineering and construction (AEC) industry: the way forward in construction. In: Proceedings: W096 - special track 18th cib world building congress, pp 1–11

    Google Scholar 

  13. Karim Jallow A, Demian PN, Baldwin A, Anumba C (2014) An empirical study of the complexity of requirements management in construction projects. Eng Constr Archit Manag 21:505–531

    Google Scholar 

  14. Jallow AK, Demian P, Anumba CJ, Baldwin AN (2017) An enterprise architecture framework for electronic requirements information management. Int J Inf Manage 37:455–472

    Article  Google Scholar 

  15. Talebi S, Koskela L, Tzortzopoulos P, Kagioglou M (2020) Tolerance management in construction: a conceptual framework. Sustainability 12:1039

    Article  Google Scholar 

  16. Rausch C, Talebi S, Poshdar M, Li B, Schultz C (2022) Tolerance management domain model for semantic enrichment of BIMs. Autom Constr 141:104394

    Article  Google Scholar 

  17. Ebert C, Jastram M (2012) ReqIF: seamless requirements interchange format between business partners. IEEE Softw 29:82–87

    Article  Google Scholar 

  18. Object Management Group. Requirements Interchange Format (2016)

    Google Scholar 

  19. Deutsches Institut für Normung e.V. DIN EN 13369 Allgemeine Regeln für Betonfertigteile (Beuth Verlag GmbH) (2018)

    Google Scholar 

  20. Deutsches Institut für Normung e.V. DIN EN 14992 Betonfertigteile - Wandelemente (Beuth Verlag GmbH) (2012)

    Google Scholar 

  21. Kosse S, Vogt O, Wolf M, König M, Gerhard D (2022) Digital twin framework for enabling serial construction. Front Built Environ 8:864722

    Google Scholar 

  22. Wheatcraft LS, Ryan MJ, Dick J (2016) On the use of attributes to manage requirements. Syst Eng 19:448–458

    Article  Google Scholar 

  23. German Geotechnical Society (2013). Empfehlungen für den Entwurf, die Herstellung und den Einbau von Tübbingringen in Taschenbuch für den Tunnelbau 2014, edited by G. G. Society (Wiley-VCH Verlag GmbH), pp 17–121

    Google Scholar 

  24. Bundesministerium für Digitales und Verkehr. Zusätzliche Technische Vertragsbedingungen und Richtlinien für Ingenieurbauten (ZTV-ING) (2022)

    Google Scholar 

  25. Admin-Shell-io/Aasx-Package-Explorer. https://github.com/admin-shell-io/aasx-server. Accessed 30 Sep 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kosse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosse, S., Vogt, O., Wolf, M., König, M., Gerhard, D. (2024). Requirements Management for Flow Production of Precast Concrete Modules. In: Skatulla, S., Beushausen, H. (eds) Advances in Information Technology in Civil and Building Engineering. ICCCBE 2022. Lecture Notes in Civil Engineering, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-031-35399-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35399-4_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35398-7

  • Online ISBN: 978-3-031-35399-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics