Skip to main content

Diversities of Various Nanomaterials-Based Vaccines for Healthcare Applications

  • Chapter
  • First Online:
Nanovaccinology

Abstract

One of the most effective global public health initiatives is vaccination. But despite the abundance of extremely effective vaccines, there are still some infectious diseases for which there are no vaccines. To fully realize the potential of vaccine development for both newly emerging infectious diseases and illnesses for which there are currently no vaccines available, new technologies are required. The COVID-19 mRNA vaccines’ success demonstrates that nanoscale platforms are promising delivery vectors for efficient and secure vaccines. The development of drugs is significantly influenced by nanotechnology. Polymeric nanoparticles can transport drugs, proteins, and vaccine antigens to the desired site of action. Through mucosal administration, polymeric nanoparticles with lower cytotoxicity can shield drugs or antigens from degradation in unfavorable conditions. In addition, the uptake of nanoparticles by antigen-presenting cells can boost and trigger powerful immune responses. Nanomaterials are also frequently used in vaccine delivery systems because they can extend the half-life of the vaccine antigen. Inorganic nanoparticles, polymer-based nanoparticles, nanomaterial vaccines, the idea behind nanomaterial-based vaccines, and applications of nanomaterial-based vaccines in healthcare are the main topics of this review. In the context of drugs and vaccines, the use and potential of nano bases as delivery vehicles and adjuvants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta, C. J., Galindo, C. M., Deen, J. L., Ochiai, R. L., Lee, H. J., von Seidlein, L., et al. (2005). Vaccines against cholera, typhoid fever and shigellosis for developing countries. Expert Opinion on Biological Therapy, 4, 1939–1951. https://doi.org/10.1517/14712598.4.12.1939

    Article  Google Scholar 

  • Alloatti, A., Kotsias, F., Magalhaes, J. G., & Amigorena, S. (2016). Dendritic cell maturation and cross-presentation: Timing matters! Immunological Reviews, 272(1), 97–108.

    Article  CAS  Google Scholar 

  • Alving, C. R., Beck, Z., Matyas, G. R., & Rao, M. (2016). Liposomal adjuvants for human vaccines. Expert Opinion on Drug Delivery, 13, 807–816. https://doi.org/10.1517/17425247.2016.1151871

    Article  CAS  Google Scholar 

  • Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A., Khim, N., et al. (2014). A molecular marker of artemisinin-resistant plasmodium falciparum malaria. Nature, 505, 50–55.

    Article  Google Scholar 

  • Arnáiz, B., Martínez-Ávila, O., Falcon-Perez, J. M., & Penadés, S. (2012). Cellular uptake of gold nanoparticles bearing HIV gp120 Oligomannosides. Bioconjugate Chemistry, 23(4), 814–825.

    Article  Google Scholar 

  • Azharuddin, M., Zhu, G. H., Sengupta, A., Hinkula, J., Slater, N. K., & Patra, H. K. (2022). Nano toolbox in immune modulation and nanovaccines. Trends in Biotechnology.

    Google Scholar 

  • Bachmann, M. F., & Jennings, G. T. (2019). Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 10, 1–15. https://doi.org/10.1038/s41577-019-0144-4

    Article  Google Scholar 

  • Bahadoran, A., Moeini, H., Bejo, M. H., Hussein, M. Z., & Omar, A. R. (2016). Development of Tat-conjugated dendrimer for transdermal DNA vaccine delivery. Journal of Pharmacy & Pharmaceutical Sciences, 19, 325–338. https://doi.org/10.18433/J3G31Q

    Article  CAS  Google Scholar 

  • Basu, R., Zhai, L., Contreras, A., & Tumban, E. (2018). Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine, 36, 1256–1264. https://doi.org/10.1016/j.vaccine.2018.01.056

    Article  CAS  Google Scholar 

  • Baylor, N. W., Egan, W., & Richman, P. (2002). Aluminum salts in vaccines—US perspective. Vaccine, 20, S18–S23.

    Google Scholar 

  • Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology, 56, 101581.

    Google Scholar 

  • Bolhassani, A., Safaiyan, S., & Rafati, S. (2011). Improvement of different vaccine delivery systems for cancer therapy. Molecular Cancer, 10, 3.

    Article  CAS  Google Scholar 

  • Boopathy, A. V., Mandal, A., Kulp, D. W., Menis, S., Bennett, N. R., Watkins, H. C., Wang, W., Martin, J., Thai, N. T., He, Y., et al. (2019). Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proceedings of the National Academy of Sciences, 116, 16473–16478.

    Article  CAS  Google Scholar 

  • Butkovich, N., Li, E., Ramirez, A., Burkhardt, A. M., & Wang, S. W. (2021). Advancements in protein nanoparticle vaccine platforms to combat infectious disease. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13(3), e1681. https://doi.org/10.1002/wnan.1681

    Article  CAS  Google Scholar 

  • Chahal, J. S., Khan OF, Cooper, C. L., McPartlan, J. S., Tsosie, J. K., Tilley, L. D., et al. (2016). Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proceedings of the National Academy of Sciences USA, 113, E4133–E4142. https://doi.org/10.1073/pnas.1600299113

    Article  CAS  Google Scholar 

  • Chai, Q., Wang, L., Liu, C. H., & Ge, B. (2020). New insights into the evasion of host innate immunity by mycobacterium tuberculosis. Cellular & Molecular Immunology, 17, 901–913. https://doi.org/10.1038/s41423-020-0502-z

    Article  CAS  Google Scholar 

  • Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10.

    Article  Google Scholar 

  • Chen, Y.-H., Lai, K.-Y., Chiu, Y.-H., Wu, Y.-W., Shiau, A.-L., & Chen, M.-C. (2019). Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomaterialia, 97, 230–238.

    Article  CAS  Google Scholar 

  • Dadu, A., Kumar, P., & Kumar, A. (2021). Nanoparticle-based vaccines for infectious diseases: A review. Journal of Biomedical Nanotechnology, 17(8), 1425–1450. https://doi.org/10.1166/jbn.2021.3089

    Article  CAS  Google Scholar 

  • Datta, P., & Mandal, A. K. (2020). Nanotechnology-based approaches in anticancer research. International Journal of Pharmaceutical Sciences and Research, 11(7), 3072–3087. https://doi.org/10.13040/IJPSR.0975-8232.11(7).3072-87

    Article  Google Scholar 

  • Draper, S. J., & Heeney, J. L. (2010). Viruses as vaccine vectors for infectious diseases and cancer. Nature Reviews. Microbiology, 8, 62–73.

    Article  CAS  Google Scholar 

  • Eidi, H., Joubert, O., Attik, G., Duval, R. E., Bottin, M. C., Hamouia, A., et al. (2010). Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. International Journal of Pharmaceutics, 396(1–2), 156–165.

    Article  CAS  Google Scholar 

  • Fan, Y., Zheng, X., Ali, Y., Berggren, P. O., & Loo, S. C. J. (2019). Local release of rapamycin by microparticles delays islet rejection within the anterior chamber of the eye. Scientific Reports, 9(1), 1–9.

    Article  Google Scholar 

  • Fang, R. H., Hu, C. M. J., Luk, B. T., Gao, W., Copp, J. A., Tai, Y., et al. (2014). Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Letters, 14(4), 2181–2188.

    Google Scholar 

  • Ftouh, M., Kalboussi, N., Abid, N., Sfar, S., Mignet, N., & Bahloul, B. (2021). Contribution of nanotechnologies to vaccine development and drug delivery against respiratory viruses. PPAR Research, 2021.

    Google Scholar 

  • Gao, Y., Wijewardhana, C., & Mann, J. F. S. (2018). Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Frontiers in Immunology, 9, 345. https://doi.org/10.3389/fimmu.2018.00345

    Article  CAS  Google Scholar 

  • Garg, A., & Dewangan, H. K. (2020). Nanoparticles as adjuvants in vaccine delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 37(2).

    Google Scholar 

  • González-Miró, M., Rodríguez-Noda, L., Fariñas-Medina, M., Cedré-Marrero, B., Madariaga-Zarza, S., Zayas-Vignier, C., et al. (2018). Bioengineered polyester beads co-displaying protein and carbohydrate-based antigens induce protective immunity against bacterial infection. Scientific Reports, 8, 1–15. https://doi.org/10.1038/s41598-018-20205-7

    Article  CAS  Google Scholar 

  • Gordon, J. R., Ma, Y., Churchman, L., Gordon, S. A., & Dawicki, W. (2014). Regulatory dendritic cells for immunotherapy in immunologic diseases. Frontiers in Immunology, 5, 7.

    Article  Google Scholar 

  • Grgacic, E. V. L., & Anderson, D. A. (2006). Virus-like particles: passport to immune recognition. Methods, 40, 60–65. https://doi.org/10.1016/j.ymeth.2006.07.018

    Article  CAS  Google Scholar 

  • Guo, S., Fu, D., Utupova, A., Sun, D., Zhou, M., Jin, Z., & Zhao, K. (2019). Applications of polymer-based nanoparticles in vaccine field. Nanotechnology Reviews, 8(1), 143–155.

    Article  CAS  Google Scholar 

  • Gutjahr, A., Phelip, C., Coolen, A.-L., Monge, C., Boisgard, A.-S., Paul, S., & Verrier, B. (2016). Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccine, 4, 34.

    Article  Google Scholar 

  • Hanley, K. A. (2011). The double-edged sword: How evolution can make or break a live-attenuated virus vaccine. Evolution: Education and Outreach, 4, 635. https://doi.org/10.1007/S12052-011-0365-Y

    Article  Google Scholar 

  • Harandi, A. M., Medaglini, D., & Shattock, R. J. (2010). Vaccine adjuvants: A priority for vaccine research. Vaccine, 28, 2363–2366.

    Article  Google Scholar 

  • He, X., Wang, K., Tan, W., Liu, B., Lin, X., et al. (2003). Bioconjugated nanoparticles for DNA protection from cleavage. Journal of the American Chemical Society, 125, 7168–7169. https://doi.org/10.1021/ja034450d

    Article  CAS  Google Scholar 

  • He, Q., Gao, Y., Zhang, L., Zhang, Z., Gao, F., Ji, X., et al. (2011). A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 32(30), 7711–7720.

    Article  CAS  Google Scholar 

  • Helmy, M. T., Sroor, F. M., Mahrous, K. F., Mahmoud, K., Hassaneen, H. M., Saleh, F. M., ... & Mohamed Teleb, M. A. (2022). Anticancer activity of novel 3‐(furan‐2‐yl) pyrazolyl and 3‐(thiophen‐2‐yl) pyrazolyl hybrid chalcones: Synthesis and in vitro studies. Archiv der Pharmazie, 355(3), 2100381

    Google Scholar 

  • Ichihashi, T., Satoh, T., Sugimoto, C., & Kajino, K. (2013). Emulsified phosphatidylserine, simple and effective peptide carrier for induction of potent epitope-specific T cell responses. PLoS One, 8, e60068. https://doi.org/10.1371/journal.pone.0060068

    Article  CAS  Google Scholar 

  • Jia, Y., Omri, A., Krishnan, L., & McCluskie, M. J. (2017). Potential applications of nanoparticles in cancer immunotherapy. Human Vaccines & Immunotherapeutics, 13(1), 63–74.

    Article  Google Scholar 

  • Jones, R. M., Chichester, J. A., Mett, V., Jaje, J., Tottey, S., Manceva, S., et al. (2013). A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One, 8(11), e79538.

    Article  Google Scholar 

  • Kawano, M., Matsui, M., & Handa, H. (2013). SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Review of Vaccines, 12, 199–210. https://doi.org/10.1586/erv.12.149

  • Kheirollahpour, M., Mehrabi, M., Dounighi, N. M., Mohammadi, M., & Masoudi, A. (2020). Nanoparticles and vaccine development. Pharmaceutical Nanotechnology, 8(1), 6–21.

    Article  CAS  Google Scholar 

  • Kim, J. S., Choi, J., Kim, J. C., Park, H., Yang, E., Park, J. S., Song, M., & Park, J. (2020). Microneedles with dual release pattern for improved immunological efficacy of hepatitis B vaccine. International Journal of Pharmaceutics, 591, 119928.

    Article  CAS  Google Scholar 

  • Kumar, R., Nyakundi, R., Kariuki, T., Ozwara, H., Nyamongo, O., Mlambo, G., et al. (2013). Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons. Vaccine, 31(31), 3140–3147.

    Article  CAS  Google Scholar 

  • Kumar, R., Angov, E., & Kumar, N. (2014). Potent malaria transmission-blocking antibody responses elicited by plasmodium falciparum Pfs25 expressed in Escherichia coli after successful protein refolding. Infection and Immunity, 82(4), 1453–1459.

    Article  Google Scholar 

  • Kuwentrai, C., Yu, J., Rong, L., Zhang, B., Hu, Y., Gong, H., Dou, Y., Deng, J., Huang, J., & Xu, C. (2020). Intradermal delivery of receptor-binding domain of SARS-CoV-2 spike protein with dissolvable microneedles to induce humoral and cellular responses in mice. Bioengineering & Translational Medicine, 6, e10202.

    Google Scholar 

  • Levine, M. M., & Sztein, M. B. (2004). Vaccine development strategies for improving immunization: The role of modern immunology. Nature Immunology, 5(5), 460–464.

    Article  CAS  Google Scholar 

  • Li, J., Yu, J., Xu, S., Shi, J., Xu, S., Wu, X., Fu, F., Peng, Z., Zhang, L., & Zheng, S. (2016). Immunogenicity of porcine circovirus type 2 nucleic acid vaccine containing CpG motif for mice. Virology Journal, 13, 1–7.

    Article  CAS  Google Scholar 

  • Look, M., Bandyopadhyay, A., Blum, J. S., & Fahmy, T. M. (2010). Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Advanced Drug Delivery Reviews, 62, 378–393.

    Article  CAS  Google Scholar 

  • Lugade, A. A., Bharali, D. J., Pradhan, V., Elkin, G., Mousa, S. A., & Thanavala, Y. (2013). Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity. Nanomedicine: Nanotechnology, Biology and Medicine, 9(7), 923–934.

    Article  CAS  Google Scholar 

  • Marques Neto, L. M., Kipnis, A., & Junqueira-Kipnis, A. P. (2017). Role of metallic nanoparticles in vaccinology: Implications for infectious disease vaccine development. Frontiers in Immunology, 8, 239.

    Article  Google Scholar 

  • Mehrabi, M., Montazeri, H., Mohamadpour Dounighi, N., Rashti, A., & Vakili-Ghartavol, R. (2018). Chitosan-based nanoparticles in mucosal vaccine delivery. Archives of Razi Institute, 73(3), 165–176.

    CAS  Google Scholar 

  • Melief, C. J., van Hall, T., Arens, R., Ossendorp, F., & van der Burg, S. H. (2015). Therapeutic cancer vaccines. Journal of Clinical Investigation, 125(9), 3401–3412.

    Article  Google Scholar 

  • Moon, J. J., Suh, H., Bershteyn, A., Stephan, M. T., Liu, H., Huang, B., et al. (2011). Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 10, 243–251. https://doi.org/10.1038/nmat2960

    Article  CAS  Google Scholar 

  • Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., ... & Sawa, H. (2013). Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 7(5), 3926–3938.

    Google Scholar 

  • Nunes, J. K., Woods, C., Carter, T., Raphael, T., Morin, M. J., Diallo, D., et al. (2014). Development of a transmission-blocking malaria vaccine: Progress, challenges, and the path forward. Vaccine, 32(43), 5531–5539.

    Article  Google Scholar 

  • O’Hagan, D. T., & Valiante, N. M. (2003). Recent advances in the discovery and delivery of vaccine adjuvants. Nature Reviews. Drug Discovery, 2, 727–735.

    Article  Google Scholar 

  • Palmer, G. H., Bankhead, T., & Seifert, H. S. (2016). Antigenic variation in bacterial pathogens. Microbiology Spectrum, 4, 4.1.03. https://doi.org/10.1128/microbiolspec.VMBF-0005-2015

    Article  CAS  Google Scholar 

  • Panda, M., Abraham, A., & Patra, M. R. (2012a). A hybrid intelligent approach for network intrusion detection. Procedia Engineering, 30, 1–9.

    Google Scholar 

  • Panda, M. K., Ladomenou, K., & Coutsolelos, A. G. (2012b). Porphyrins in bio-inspired transformations: Lightharvesting to solar cell. Coordination Chemistry Reviews, 256(21–22), 2601–2627.

    Google Scholar 

  • Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279.

    Article  CAS  Google Scholar 

  • Patel, K. G., & Swartz, J. R. (2011). Surface functionalization of virus-like particles by direct conjugation using azide–alkyne click chemistry. Bioconjugate Chemistry, 22, 376–387. https://doi.org/10.1021/bc100367u

    Article  CAS  Google Scholar 

  • Pati, R., Shevtsov, M., & Sonawane, A. (2018). Nanoparticle vaccines against infectious diseases. Frontiers in Immunology, 9, 2224.

    Article  Google Scholar 

  • Petkar, K., Patil, S., Chavhan, S., Kaneko, K., Sawant, K., Kunda, N., & Saleem, I. (2021). An overview of nanocarrier-based adjuvants for vaccine delivery. Pharmaceutics, 13, 455.

    Article  CAS  Google Scholar 

  • Pulendran, B. (2006). Division of labor and cooperation between dendritic cells. Nature Immunology, 7(7), 699–700.

    Google Scholar 

  • Rana, S., Bajaj, A., Mout, R., & Rotello, V. M. (2012). Monolayer coated gold nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 64(2), 200–216.

    Article  CAS  Google Scholar 

  • Rappuoli, R., Mandl, C. W., Black, S., & De Gregorio, E. (2011). Vaccines for the twenty-first century society. Nature Reviews Immunology, 11(12), 865–872.

    Google Scholar 

  • Reed, S. G., Orr, M. T., & Fox, C. B. (2013). Key roles of adjuvants in modern vaccines. Nature Medicine, 19(12), 1597–1608.

    Article  CAS  Google Scholar 

  • Ribeiro, A. M., Souza, A. C. O., Amaral, A. C., Vasconcelos, N. M., Jeronimo, M. S., Carneiro, F. P., et al. (2013). Nanobiotechnological approaches to delivery of DNA vaccine against fungal infection. Journal of Biomedical Nanotechnology, 9, 221–230. https://doi.org/10.1166/jbn.2013.1491

    Article  CAS  Google Scholar 

  • Rice-Ficht, A. C., Arenas-Gamboa, A. M., Kahl-McDonagh, M. M., & Ficht, T. A. (2010). Polymeric particles in vaccine delivery. Current Opinion in Microbiology, 13, 106–112.

    Article  CAS  Google Scholar 

  • Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., ... & Ye, J. (2012). Database resources of the national center for biotechnology information. Nucleic Acids Research, 40(D1), D13–D25.

    Google Scholar 

  • Sawa, T., Ihara, H., Ida, T., Fujii, S., Nishida, M., & Akaike, T. (2013). Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide. Nitric Oxide, 34, 10–18.

    Google Scholar 

  • Schlom, J. (2012). Therapeutic cancer vaccines: Current status and moving forward. Journal of the National Cancer Institute, 104(8), 599–613.

    Article  CAS  Google Scholar 

  • Shah, M. A. A., Ali, Z., Ahmad, R., Qadri, I., Fatima, K., & He, N. (2015). DNA-mediated vaccines delivery through nanoparticles. Journal of Nanoscience and Nanotechnology, 15(1), 41–53.

    Article  CAS  Google Scholar 

  • Shin, M. D., Shukla, S., Chung, Y. H., Beiss, V., Chan, S. K., Ortega-Rivera, O. A., Wirth, D. M., Chen, A., Sack, M., Pokorski, J. K., et al. (2020). COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology, 15, 646–655.

    Article  CAS  Google Scholar 

  • Silva, C. L., Bonato, V. L. D., Coelho-Castelo, A. A. M., De Souza, A. O., Santos, S. A., Lima, K. M., et al. (2005). Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Therapy, 12, 281–287. https://doi.org/10.1038/sj.gt.3302418

    Article  CAS  Google Scholar 

  • Smith, P., Haberl, H., Popp, A., Erb, K. H., Lauk, C., Harper, R., ... & Rose, S. (2013). How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biology, 19(8), 2285–2302.

    Google Scholar 

  • Smith, J. D., Morton, L. D., & Ulery, B. D. (2015). Nanoparticles as synthetic vaccines. Current Opinion in Biotechnology, 34, 217–224.

    Article  CAS  Google Scholar 

  • Sridhar, S., Brokstad, K. A., & Cox, R. J. (2015). Influenza vaccination strategies: Comparing inactivated and live attenuated influenza vaccines. Vaccine, 3(2), 373–389.

    Article  CAS  Google Scholar 

  • Sulczewski, F., Liszbinski, R. B., Romão, P. R. T., & Junior, L. C. R. (2018). Nanoparticle vaccines against viral infections. Archives of Virology, 163, 2313–2325.

    Article  CAS  Google Scholar 

  • Sun, L., Campbell, M. G., & Dincă, M. (2016). Electrically conductive porous metal–organic frameworks. Angewandte Chemie International Edition, 55(11), 3566–3579.

    Google Scholar 

  • Sun, B., & Xia, T. (2016). Nanomaterial-based vaccine adjuvants. Journal of Materials Chemistry B, 4(33), 5496–5509. https://doi.org/10.1039/c6tb01131d

    Article  CAS  Google Scholar 

  • Tebas, P., Yang, S., Boyer, J. D., Reuschel, E. L., Patel, A., Christensen-Quick, A., Andrade, V. M., Morrow, M. P., Kraynyak, K., Agnes, J., et al. (2021). Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, phase 1 clinical trial. EClinicalMedicine, 31, 100689.

    Article  Google Scholar 

  • Thakur, S., Singh, A. K., Ghrera, S. P., & Elhoseny, M. (2019). Multi-layer security of medical data through watermarking and chaotic encryption for tele-health applications. Multimedia Tools and Applications, 78, 3457–3470.

    Google Scholar 

  • Villa, C. H., Dao, T., Ahearn, I., Fehrenbacher, N., Casey, E., Rey, D. A., et al. (2011). Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 5, 5300–5311. https://doi.org/10.1021/nn200182x

    Article  CAS  Google Scholar 

  • Vincken, P. W., ter Braak, A. P., van Erkel, A. R., Coerkamp, E. G., de Rooy, T. P., de Lange, S., ... & Bloem, J. L. (2007). MR imaging: effectiveness and costs at triage of patients with nonacute knee symptoms. Radiology, 242(1), 85–93.

    Google Scholar 

  • Vyas, S., Quraishi, S., Gupta, S., & Jaganathan, K. (2005). Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. International Journal of Pharmaceutics, 296, 12–25. https://doi.org/10.1016/j.ijpharm.2005.02.003

    Article  CAS  Google Scholar 

  • Wang, T., Zou, M., Jiang, H., Ji, Z., Gao, P., & Cheng, G. (2011). Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. European Journal of Pharmaceutical Sciences, 44, 653–659. https://doi.org/10.1016/j.ejps.2011.10.012

    Article  CAS  Google Scholar 

  • Watson, D. S., Endsley, A. N., & Huang, L. (2012). Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine, 30, 2256–2272. https://doi.org/10.1016/j.vaccine.2012.01.070

    Article  CAS  Google Scholar 

  • Wegmann, F., Gartlan, K. H., Harandi, A. M., Brinckmann, S. A., Coccia, M., Hillson, W. R., ... & Sattentau, Q. J. (2012). Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nature Biotechnology, 30(9), 883–888.

    Google Scholar 

  • Wen, R., Umeano, A. C., Kou, Y., Xu, J., & Farooqi, A. A. (2019). Nanoparticle systems for cancer vaccine. Nanomedicine, 14(5), 627–648.

    Article  CAS  Google Scholar 

  • Whitney, S. M., Baldet, P., Hudson, G. S., & Andrews, T. J. (2001). Form I Rubiscos from non‐green algae are expressed abundantly but not assembled in tobacco chloroplasts. The Plant Journal, 26(5), 535–547.

    Google Scholar 

  • Yin, W., Xu, Y., Xu, P., Cao, X., Wu, C., Gu, C., ... & Xu, H. E. (2022). Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science, 375(6584), 1048–1053.

    Google Scholar 

  • Zhao, L., Seth, A., Wibowo, N., Zhao, C. X., Mitter, N., Yu, C., & Middelberg, A. P. (2014). Nanoparticle vaccines. Vaccine, 32(3), 327–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Islam Aqib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aqib, A.I. et al. (2023). Diversities of Various Nanomaterials-Based Vaccines for Healthcare Applications. In: Pal, K. (eds) Nanovaccinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35395-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35395-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35394-9

  • Online ISBN: 978-3-031-35395-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics