Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 721))

  • 321 Accesses

Abstract

Rapid advancements in affordable, miniaturised air pollution sensor technologies and embedded systems are enabling a new wave of reliable air quality sensing devices. Due to their ability to measure air pollution ad hoc and in great spatio-temporal resolution such devices enable advanced processing and analytics.

Our team has been engaged in the development of reliable air quality sensing devices using low-cost sensors, custom sensor boards, embedded software and cloud services. Our devices use pre-calibrated optical Particulate Matter (PM) sensors, measuring concentrations in \(ug/m^3\) of PM1.0, PM2.5 and PM10, NDIR, \( CO_2 \) sensors and electrochemical \(\textit{CO}\) sensors, as well as differential pressure sensors, while all devices monitor also humidity and temperature. The data is sampled at a few seconds interval and it is transferred to a cloud-based platform where is stored and visualised in real-time, raising alerts. A delay tolerant middleware stores data locally, temporarily for up to 12 h.

The devices have good accuracy, response time and sensitivity in indoor pollution levels, however, they suffer from low signal strength of the WiFi receiver as a result of which they often become disconnected for long period of times. A sensor data analytics platform was therefore developed using python. We introduce two new algorithms for auditing the sampling process and detecting and removing outliers specific to air quality data. Furthermore we introduce a new methodology for detecting patterns based on visual analytics.

We have conducted a pilot application in a state-of-the art industrial space that is sensitive to infection caused by particulate matter such as dust. Fifteen PM devices were installed in three different production areas with varying air quality sensitivity. Indicative results from two of the devices from the first production area show that mining sensor timeseries with the above analytics produces useful insights on the level of pollution and industrial activity while confirming the stable performance of our devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahajan, S., Kumar, P.: Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustain. Cities Soc., 102076 (2020)

    Google Scholar 

  2. Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., et al.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)

    Article  Google Scholar 

  3. Morawska, L., Thai, P.K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., et al.: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: how far have they gone? Environ. Int. 116(2018), 286–299 (2018). https://doi.org/10.1016/j.envint.2018.04.018

    Article  Google Scholar 

  4. Snyder, E.G., Watkins, T.H., Solomon, P.A., Thoma, E.D., Williams, R.W., Hagler, G.S.W., et al.: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: how far have they gone? Environ. Sci. Technol. 47(2013), 11369–11377 (2013)

    Article  Google Scholar 

  5. Anjomshoaa, A., Duarte, F., Rennings, D., Matarazzo, T.J., deSouza, P., Ratti, C.: City scanner: Building and scheduling a mobile sensing platform for smart city services. IEEE Internet Things J. 5, 4567–4579 (2018)

    Article  Google Scholar 

  6. DeSouza, P., Anjomshoaa, A., Duarte, F., Kahn, R., Kumar, P., Ratti, C.: Air quality monitoring using mobile low-cost sensors mounted on trash-trucks: methods development and lessons learned. Sustain. Cities Soc. 60, 102239 (2020)

    Article  Google Scholar 

  7. Elen, B., Peters, J., Poppel, M.V., Bleux, N., Theunis, J., Reggente, M., et al.: The aeroflex: a bicycle for mobile air quality measurements. Sensors 13(2013), 221–240 (2013)

    Google Scholar 

  8. Dutta, P., et al.: Common sense: participatory urban sensing using a network of handheld air quality monitors. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, Berkeley, CA, USA, 4–6 November ACM: New York, NY, USA, 2009; pp. 349–350 (2009)

    Google Scholar 

  9. Krzyzanowski, M., Martin, R.V., Van Dingenen, R., van Donkelaar, A., Thurston, G.D.: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 46, 652–660 (2012)

    Article  Google Scholar 

  10. WHO- Regional office for Europe, Review of evidence on health aspects of air pollution - REVIHAAP project: final technical report (2013)

    Google Scholar 

  11. Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L.: Participatory air pollution monitoring using smartphones. Mobile Sens. 1, 1–5 (2012)

    Google Scholar 

  12. deSouza, P., Kahn, A.R., Limbacher, A.J., Marais, A.E., Duarte, F., Ratti, C.: Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications. Atmos. Measur. Tech. 13(10), 5319–5334 (2020). https://doi.org/10.5194/amt-13-5319-2020

    Article  Google Scholar 

  13. Koukouli, M.E., et al.: Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of Covid-19. Atmos. Chem. Phys. 21(21), 1759–1774 (2020)

    Google Scholar 

  14. Postolache, O.A., Pereira, J.M.D., Girao, P.M.B.S.: Smart sensors network for air quality monitoring applications. IEEE Trans. Instrum. Meas. 58, 3253–3262 (2009)

    Article  Google Scholar 

  15. Kumar, P., et al.: Indoor air quality and energy management through real-time sensing in commercial buildings. Energy Build. 111(145–153), 0378–7788 (2016)

    Google Scholar 

  16. Hagan, D.H., Gani, S., Bhandari, S., Patel, K., Habib, G., Apte, J., Hildebrandt Ruiz, L., Kroll, H.J.: Inferring aerosol sources from low-cost air quality sensor measurements: a case study in Delhi, India. Environ. Sci. Technol. Lett. 6(8), 467–472 (2019)

    Article  Google Scholar 

  17. Yazdi, M.N., Arhami, N., Delavarrafiee, M., Ketabchy, M.: Developing air exchange rate models by evaluating vehicle in-cabin air pollutant exposures in a highway and tunnel setting: case study of Tehran. Iran, Environ. Sci. Pollut. Res. Int. 26(1), 501–513 (2019)

    Article  Google Scholar 

  18. Bukowiecki, N., Dommen, J., Prévôt, A.S.H., Richter, R., Weingartner, E., Baltensperger, U.: A mobile pollutant measurement laboratory-Measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmos. Environ. 36, 5569–5579 (2002)

    Article  Google Scholar 

  19. Apte, J.S., Messier, K.P., Gani, S., Brauer, M., Kirchstetter, T.W., Lunden, M.M., et al.: High-resolution air pollution mapping with google street view cars: exploiting big data. Environ. Sci. Technol. 51, 6999–7008 (2017)

    Article  Google Scholar 

  20. Capezzuto, L., et al.: A maker friendly mobile and social sensing approach to urban air quality monitoring. In: Proceedings of the 2014 IEEE on SENSORS, Valencia, Spain, pp. 12–16 (2014)

    Google Scholar 

  21. Murty, R.N., et al.: Citysense: an urban-scale wireless sensor network and testbed. In: Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security, Waltham, MA, USA, 12–13 May 2008, pp. 583–588 (2008)

    Google Scholar 

  22. Kadri, A., Yaacoub, E., Mushtaha, M., Abu-Dayya, A.: Wireless sensor network for real-time air pollution monitoring. In: Proceedings of the 2013 1st International Conference on Communications, Signal Processing, and their applications (ICCSPA), Sharjah, United Arab Emirates, 12–14 February, pp. 1–5 (2013)

    Google Scholar 

  23. Jiang, Y., et al.: MAQS: a personalized mobile sensing system for indoor air quality monitoring. In: Proceedings of the 13th International Conference on Ubiquitous Computing, Beijing, China, 17–21 September 2011; ACM: New York, NY, USA, pp. 271–280 (2011)

    Google Scholar 

  24. Jelicic, V., Magno, M., Brunelli, D., Paci, G., Benini, L.: Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sens. J. 13, 328–338 (2013)

    Article  Google Scholar 

  25. Mansour, S., Nasser, N., Karim, L., Ali, A.: Wireless sensor network-based air quality monitoring system. In: Proceedings of the 2014 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, pp. 545–550 (2014)

    Google Scholar 

  26. Sun, L., Wong, K.C., Wei, P., Ye, S., Huang, H., Yang, F., Westerdahl, D., Louie, P.K., Luk, C.W., Ning, Z.: Development and application of a next generation air sensor network for the Hong Kong marathon 2015 air quality monitoring. Sensors 16, 211 (2016)

    Article  Google Scholar 

  27. Honicky, R., Brewer, E.A., Paulos, E., White, R.: N-smarts: networked suite of mobile atmospheric real-time sensors. In: Proceedings of the Second ACM SIGCOMM Workshop on Networked Systems for Developing Regions, Seattle, WA, USA, 18 August 2008; ACM: New York, NY, USA, pp. 25–30 (2008)

    Google Scholar 

  28. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)

    Article  Google Scholar 

  29. Helbig, C., Bauer, H.-S., Rink, K., Wulfmeyer, V., Frank, M., Kolditz, O.: Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ. Earth Sci. 72(10), 3767–3780 (2014). https://doi.org/10.1007/s12665-014-3136-6

    Article  Google Scholar 

  30. Setti, L., et al.: Evaluation of the potential relationship between Particulate Matter (PM) pollution and COVID-19 infection spread in Italy:first observational study based on initial epidemic diffusion. BMJ Open; 10 (2020)

    Google Scholar 

  31. Wu, X., Nethery, R.C., Sabath, M.B., Braun, D., Dominici, F.: Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 6(45) (2020)

    Google Scholar 

  32. Saadat, S., Rawtani, D., Hussain, C.M.: Environmental perspective of COVID-19. Sci. Total Environ. Aug 1;728 (2020)

    Google Scholar 

  33. Le Quéré, C., et al.: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 10, 647–653 (2020)

    Article  Google Scholar 

  34. Katsiri, E.: Sensor networks with edge intelligence for reliable air quality monitoring in the Covid-19 Era. In: Proceedings of the ICR’22 International Conference on Innovations in Computing Research, pp. 83–396 (2020)

    Google Scholar 

  35. Katsiri, E.: Developing reliable air quality monitoring devices with low cost sensors: method and lessons learned. Int. J. Environ. Sci. 6, 425–444 (2020)

    Google Scholar 

  36. Grafana: The open observability platform. https://grafana.com

  37. Fadhel, M., Sekerinski, E., Yao, S.: A comparison of time series databases for storing water quality data. Mobile Technol. Appl. Internet Things, IMCL (2019)

    Google Scholar 

  38. Buelvas, J., Múnera, D., Tobón, V., D.P., et al.: Data quality in IoT-based air quality monitoring systems: a systematic mapping study. Water Air Soil Pollut. 234, 248 (2023)

    Google Scholar 

  39. Sharifi, R., Langari, R.: Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models. Mech. Syst. Sign. Process. 85, 638–50 (2017)

    Article  Google Scholar 

  40. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inform. Syst. 12(4), 5–33 (1996)

    Article  Google Scholar 

  41. Li, Y., Parker, L.E.: Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks. Inform. Fusion. 15, 64–79 (2014)

    Article  Google Scholar 

  42. Aggarwal, C.C.: An introduction to outlier analysis. Outlier analysis. Springer: New York, pp. 1–40 (2013)

    Google Scholar 

  43. Ahmad, N.F., Hoang, D.B., Phung, M.H.: Robust preprocessing for health care monitoring framework. In: 2009 11th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 169–74 (2009)

    Google Scholar 

  44. Anderson, R.L.: Distribution of the serial correlation coefficient. Ann. Math. Stat. 13(1), 1–13 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bosman, H.H., Iacca, G., Tejada, A., Wörtche, H.J., Liotta, A.: Spatial anomaly detection in sensor networks using neighborhood information. Inform. Fusion 33, 41–56 (2017)

    Article  Google Scholar 

  46. Moursi, A.S., El-Fishawy, N., Djahel, S., Shouman, M.A.: An IoT enabled system for enhanced air quality monitoring and prediction on the edge. Complex Intell. Syst. 7(6), 2923–2947 (2021). https://doi.org/10.1007/s40747-021-00476-w

    Article  Google Scholar 

  47. InfluxDB line protocol reference. https://docs.influxdata.com/influxdb/v1.8/write_protocols/line_protocol_reference/

  48. Glantz, S.A., Slinker, B.K., Neilands, T,B.: Primer of Applied Regression & Analysis of Variance (Third ed.), McGraw Hill (2016)

    Google Scholar 

  49. Aho, K.A.: Foundational and Applied Statistics for Biologists (First ed.), Chapman & Hall / CRC Press (2014)

    Google Scholar 

  50. Bartlett, M.S.: On the theoretical specification and sampling properties of autocorrelated time-series. Supplement J. Royal Stat. Soc. 8(1), pp. 27–41 (1946). JSTOR, http://www.jstor.org/stable/2983611

  51. Quenouille, M.H.: The joint distribution of serial correlation coefficients. Ann. Math. Stat. 20(4), 561–571 (1949)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Katsiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katsiri, E. (2023). Industrial Air Quality Visual Sensor Analytics. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the Second International Conference on Innovations in Computing Research (ICR’23). Lecture Notes in Networks and Systems, vol 721. Springer, Cham. https://doi.org/10.1007/978-3-031-35308-6_31

Download citation

Publish with us

Policies and ethics