Skip to main content

A Computational Pipeline for Patient-Specific Prediction of the Post-operative Mitral Valve Functional State

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Mitral valve (MV) repair is safer than replacement for mitral regurgitation (MR) treatment, but long-term outcomes remain suboptimal and poorly understood. Moreover, preoperative optimization is complicated due to the heterogeneity of MR presentations and potential repair configurations. We thus developed a patient-specific MV computational pipeline to quantitatively predict the post-repair MV functional state using standard-of-care preoperative imaging data alone. First, we built a finite-element model of the full patient-specific MV apparatus by quantifying the MV chordae tendinae (MVCT) distributions from 5 CT-imaged excised human hearts and incorporating this data with patient-specific MV leaflet geometries and and MVCT origin displacements from preoperative 3D echocardiography. We then calibrated the leaflet and MVCT pre-strains by simulating preoperative MV closure in order to tune the functionally equivalent, patient-specific mechanical behavior. With this fully calibrated MV model, we simulated undersized ring annuloplasty (URA) by modifying the annular displacement to match the applied ring size. In all patient cases, the postoperative geometries were predicted to within 1 mm of the target, and the MV leaflet strain fields demonstrated very good global and local correspondence to results from a previous heavily validated pipeline. Additionally, our model predicted increased postoperative posterior leaflet tethering in a recurrent patient, which is the likely driver of long-term MV repair failure. This pipeline allows us to predict postoperative outcomes using strictly preoperative clinical data, which lays the foundation for quantitative surgical planning, personalized patient selection, and ultimately, more durable MV repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acker, M.A., et al.: Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N. Engl. J. Med. 370(1), 23–32 (2014)

    Article  Google Scholar 

  2. Ayoub, S., et al.: Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J. R. Soc. Interface 14(135), 20170580 (2017)

    Article  Google Scholar 

  3. Bouma, W., et al.: Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral annuloplasty. Ann. Thorac. Surg. 101(2), 567–575; discussion 575 (2016). https://doi.org/10.1016/j.athoracsur.2015.09.076, www.ncbi.nlm.nih.gov/pubmed/26688087

  4. Bouma, W., et al.: Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral annuloplasty. Ann. Thorac. Surg. 101(2), 567–575 (2016)

    Article  Google Scholar 

  5. Drach, A., Khalighi, A.H., Sacks, M.S.: A comprehensive pipeline for multi-resolution modeling of the mitral valve: validation, computational efficiency, and predictive capability. Int. J. Numer. Methods Biomed. Eng. 34(2), e2921 (2018)

    Article  Google Scholar 

  6. Drach, A., Khalighi, A.H., Sacks, M.S.: A comprehensive pipeline for multi-resolution modeling of the mitral valve: validation, computational efficiency, and predictive capability. Int. J. Numer. Methods Biomed. Eng. 34(2), e2921 (2018). https://doi.org/10.1002/cnm.2921

    Article  Google Scholar 

  7. Eckert, C.E., Zubiate, B., Vergnat, M., Gorman, 3rd, J.H., Gorman, R.C., Sacks, M.S.: In vivo dynamic deformation of the mitral valve annulus. Ann Biomed Eng 37(9), 1757–71 (2009). https://doi.org/10.1007/s10439-009-9749-3, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve &db=PubMed &dopt=Citation &list_uids=19585241

  8. Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014)

    Article  Google Scholar 

  9. Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P.: Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34(10), 1509–1518 (2006)

    Article  Google Scholar 

  10. Hart, E.A., et al.: Transoesophageal echocardiography-based computational simulation of the mitral valve for mitraclip placement. Improving Treat. Plann. Card. Interv. 53 (2019)

    Google Scholar 

  11. Howsmon, D.P., et al.: Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling. J. R. Soc. Interface 17(166), 20200098 (2020)

    Article  Google Scholar 

  12. Iung, B., et al.: Contemporary presentation and management of valvular heart disease: the eurobservational research programme valvular heart disease ii survey. Circulation 140(14), 1156–1169 (2019)

    Article  Google Scholar 

  13. Khalighi, A.H., Rego, B.V., Drach, A., Gorman, R.C., Gorman, J.H., Sacks, M.S.: Development of a functionally equivalent model of the mitral valve chordae tendineae through topology optimization. Ann. Biomed. Eng. 47(1), 60–74 (2019)

    Article  Google Scholar 

  14. Kong, F., Caballero, A., McKay, R., Sun, W.: Finite element analysis of mitraclip procedure on a patient-specific model with functional mitral regurgitation. J. Biomech. 104, 109730 (2020)

    Article  Google Scholar 

  15. Kunzelman, K., Cochran, R., Chuong, C., Ring, W., Verrier, E.D., Eberhart, R.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3), 326–340 (1993)

    Google Scholar 

  16. Mansi, T., et al.: An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16(7), 1330–46 (2012)

    Article  Google Scholar 

  17. McGee, E.C., et al.: Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 128(6), 916–24 (Dec 2004). https://doi.org/10.1016/j.jtcvs.2004.07.037, http://www.jtcvsonline.org/article/S0022-5223(04)01143-2/pdf

  18. Meijerink, F., et al.: Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation. J. Cardiothorac. Surg. 15(1), 1–8 (2020)

    Article  Google Scholar 

  19. Members, W.C., et al.: 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 77(4), e25–e197 (2021)

    Article  Google Scholar 

  20. Padala, M., Sacks, M.S., Liou, S.W., Balachandran, K., He, Z., Yoganathan, A.P.: Mechanics of the mitral valve strut chordae insertion region (2010)

    Google Scholar 

  21. Perrault, L.P., et al.: Optimal surgical management of severe ischemic mitral regurgitation: to repair or to replace? J. Thorac. Cardiovasc. Surg. 143(6), 1396–1403 (2012)

    Article  Google Scholar 

  22. Pham, T.: Finite element analysis of patient-specific mitral valve with mitral regurgitation. Cardiovasc. Eng. Technol. 8(1), 3–16 (2017)

    Article  Google Scholar 

  23. Rego, B.V., et al.: A noninvasive method for the determination of in vivo mitral valve leaflet strains. Int. J. Numer. Methods Biomed. Eng. 34(12), e3142 (2018)

    Article  Google Scholar 

  24. Rego, B.V., et al.: Remodeling of the mitral valve: an integrated approach for predicting long-term outcomes in disease and repair. Ph.D. thesis (2019)

    Google Scholar 

  25. Sacks, M.S., Yoganathan, A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B: Biol. Sci. 362(1484), 1369–1391 (2007)

    Article  Google Scholar 

  26. Salgo, I.S., et al.: Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6), 711–717 (2002)

    Article  Google Scholar 

  27. Selection of the optimal candidate to Mitraclip for secondary mitral regurgitation: beyond mitral valve morphology. Front. Cardiovasc. Med. 8, 585415 (2021)

    Google Scholar 

  28. Schubert, S.A., Mehaffey, J.H., Charles, E.J., Kron, I.L.: Mitral valve repair: the French correction versus the American correction. Surg. Clin. 97(4), 867–888 (2017)

    Google Scholar 

  29. Simonian, N.T., Liu, H., Pouch, A.M., Gorman, J.H., III., Gorman, R.C., Sacks, M.S.: Quantitative in vivo assessment of human mitral valve coaptation area after undersized ring annuloplasty repair for ischemic mitral regurgitation. JTCVS Tech. 16, 49–59 (2022)

    Article  Google Scholar 

  30. Verhey, J.F., Nathan, N.S., Rienhoff, O., Kikinis, R., Rakebrandt, F., D’Ambra, M.N.: Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed. Eng. Online 5(1), 1–9 (2006)

    Article  Google Scholar 

  31. Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F.M., Redaelli, A.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. A Math. Phys. Eng. Sci. 366(1879), 3411–34 (2008). https://doi.org/10.1098/rsta.2008.0095, http://www.ncbi.nlm.nih.gov/pubmed/18603525

  32. Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)

    Article  Google Scholar 

  33. Wong, V.M., Wenk, J.F., Zhang, Z., Cheng, G., Acevedo-Bolton, G., Burger, M., Saloner, D.A., Wallace, A.W., Guccione, J.M., Ratcliffe, M.B., et al.: The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93(3), 776–782 (2012)

    Article  Google Scholar 

  34. Zuo, K., Pham, T., Li, K., Martin, C., He, Z., Sun, W.: Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae. J. Mech. Behav. Biomed. Mater. 62, 607–618 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Institutes of Health grants HL129077, HL119297 to MSS and RCG, and an American Heart Association pre-doctoral fellowship to NTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Simonian, N.T., Pouch, A.M., Gorman, III, J.H., Gorman, R.C., Sacks, M.S. (2023). A Computational Pipeline for Patient-Specific Prediction of the Post-operative Mitral Valve Functional State. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics