Skip to main content

Impact of Blood Rheological Strategies on the Optimization of Patient-Specific LAAO Configurations for Thrombus Assessment

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13958))

  • 1182 Accesses

Abstract

Left atrial appendage occlusion devices (LAAO) are a feasible alternative for non-valvular atrial fibrillation (AF) patients at high risk of thromboembolic stroke and contraindication to antithrombotic therapies. However, optimal LAAO device configurations (i.e., size, type, location) remain unstandardized due to the large anatomical variability of the left atrial appendage (LAA) morphology, leading to a 4–6% incidence of device-related thrombus (DRT). In-silico simulations can be used to estimate the risk of DRT and identify the critical parameters, such as suboptimal device positioning. However, simulation outcomes depend a lot on a series of modelling assumptions such as blood behaviour. Therefore, in this work, we present fluid simulations results computed on two patient-specific LA geometries, using two different commercially available LAAO devices, located in two positions: 1) mimicking the real post-LAAO intervention configuration; and 2) an improved one better covering the pulmonary ridge for DRT prevention. Different blood modeling strategies were also tested. The results show flow re-circulations at low velocities with significant platelet accumulation in LAA-deep device positioning uncovering the pulmonary ridge, potentially leading to thrombus formation. In addition, assuming Newtonian blood behaviour may result in an overestimation of DRT risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.slicer.org/.

  2. 2.

    http://www.meshlab.net.

  3. 3.

    http://gmsh.info.

  4. 4.

    https://bionumbers.hms.harvard.edu/search.aspx.

References

  1. Aguado, A.M., et al.: In silico optimization of left atrial appendage occluder implantation using interactive and modeling tools. Front. Physiol. 10, 237 (2019)

    Article  Google Scholar 

  2. Alkhouli, M., Ellis, C.R., Daniels, M., Coylewright, M., Nielsen-Kudsk, J.E., Holmes, D.R.: Left atrial appendage occlusion: current advances and remaining challenges. JACC Adv. 100136 (2022)

    Google Scholar 

  3. Aminian, A., et al.: Incidence, characterization, and clinical impact of device-related thrombus following left atrial appendage occlusion in the prospective global amplatzer amulet observational study. JACC Cardiovasc. Interv. 12(11), 1003–1014 (2019)

    Google Scholar 

  4. Cresti, A., et al.: Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: a large transoesophageal echo study. EuroIntervention 15(3), e225–e230 (2019)

    Article  Google Scholar 

  5. Flores-Umanzor, E., et al.: Device related thrombosis after left atrial appendage occlusion: does thrombus location always predicts its origin? J. Interv. Card. Electrophysiol. 60, 347–348 (2021)

    Article  Google Scholar 

  6. García-Isla, G., et al.: Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int. J. Numer. Methods Biomed. Eng. 34(8), e3100 (2018)

    Google Scholar 

  7. García-Villalba, M., et al.: Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk. Front. Physiol. 12, 596596 (2021)

    Article  Google Scholar 

  8. Gonzalo, A., et al.: Non-newtonian blood rheology impacts left atrial stasis in patient-specific simulations. Int. J. Numer. Methods Biomed. Eng. e3597 (2022)

    Google Scholar 

  9. Holmes Jr, D.R., Alkhouli, M., Reddy, V.: Left atrial appendage occlusion for the unmet clinical needs of stroke prevention in nonvalvular atrial fibrillation. In: Mayo Clinic Proceedings, vol. 94, pp. 864–874. Elsevier (2019)

    Google Scholar 

  10. Imaging, P.M.: 3mensio Medical Imaging B.V. https://www.3mensio.com/

  11. Khalili, E., Daversin-Catty, C., Olivares, A.L., Mill, J., Camara, O., Valen-Sendstad, K.: On the importance of fundamental computational fluid dynamics towards a robust and reliable model of left atrial flows: is there more than meets the eye? (2023). https://arxiv.org/abs/2302.01716

  12. Li, A., Ahmadi, G.: Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16(4), 209–226 (1992)

    Article  Google Scholar 

  13. Lim, M.Y., Abou-Ismail, M.Y.: Left atrial appendage occlusion for management of atrial fibrillation in persons with hemophilia. Thromb. Res. 206, 9–13 (2021)

    Article  Google Scholar 

  14. Masci, A., et al.: A proof of concept for computational fluid dynamic analysis of the left atrium in atrial fibrillation on a patient-specific basis. J. Biomech. Eng. 142(1) (2020)

    Google Scholar 

  15. Mill, J., et al.: Sensitivity analysis of in silico fluid simulations to predict thrombus formation after left atrial appendage occlusion. Mathematics 9(18), 2304 (2021)

    Article  Google Scholar 

  16. Mill, J., et al.: Impact of flow dynamics on device-related thrombosis after left atrial appendage occlusion. Can. J. Cardiol. 36(6) (2020)

    Google Scholar 

  17. NV.F.: FEops HeartGuide. https://feops.com/

  18. O’Rourke, P.J., Amsden, A.: A spray/wall interaction submodel for the kiva-3 wall film model. SAE Trans. 281–298 (2000)

    Google Scholar 

  19. Planas, E., et al.: In-silico analysis of device-related thrombosis for different left atrial appendage occluder settings. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 160–168. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_18

    Chapter  Google Scholar 

  20. Pons, M.I., et al.: Joint analysis of morphological parameters and in silico haemodynamics of the left atrial appendage for thrombogenic risk assessment. J. Interv. Cardiol. 2022 (2022)

    Google Scholar 

  21. Veronesi, F., et al.: Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21(4), 347–354 (2008)

    Article  Google Scholar 

  22. Viceconti, M., Pappalardo, F., Rodriguez, B., Horner, M., Bischoff, J., Tshinanu, F.M.: In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021)

    Article  Google Scholar 

  23. Wang, Y., Qiao, Y., Mao, Y., Jiang, C., Fan, J., Luo, K.: Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Math. Biosci. Eng. 17(3), 2348–2360 (2020)

    Article  MATH  Google Scholar 

  24. Watson, T., Shantsila, E., Lip, G.Y.: Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373(9658), 155–166 (2009)

    Article  Google Scholar 

  25. Weddell, J.C., Kwack, J., Imoukhuede, P., Masud, A.: Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between newtonian and non-newtonian blood models. PLoS ONE 10(4), e0124575 (2015)

    Article  Google Scholar 

  26. Zaccaria, A., et al.: Left atrial appendage occlusion device: development and validation of a finite element model. Med. Eng. Phys. 82, 104–118 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement, No 101016496 (SimCardioTest).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Albors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albors, C., Olivares, A.L., Iriart, X., Cochet, H., Mill, J., Camara, O. (2023). Impact of Blood Rheological Strategies on the Optimization of Patient-Specific LAAO Configurations for Thrombus Assessment. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics