Skip to main content

Application of Machine Learning in Predicting Crime Links on Specialized Features

  • Conference paper
  • First Online:
Computer and Communication Engineering (CCCE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1823))

Included in the following conference series:

  • 126 Accesses

Abstract

Crime has negatively impacted the individual’s life and the nation’s economic growth. Currently, manual human assessments are used by security operatives to analyze the relationship between crime location and crime types from huge crime datasets, which are tedious and overwhelming. Hence, subject the criminal prediction results to errors. While many researchers make use of static crime dataset features for prediction which affects the prediction results, fewer approaches have focused on using crime dynamic features to address this lacuna. This research develops a machine learning-ensemble model based on dynamic crime features to address the issue of inaccuracy affecting crime prediction systems. Experiments were conducted on an Africa-based police crime data repository. Based on the experimental results, the proposed model outperforms the state of art models in terms of average precision, F1-score, and accuracy with 0.97, 0.97, and 97.03% respectively. The deployment of this proposed model in a complex environment can help security personnel to solve crime accurately and have a better response towards criminal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Esan, O.A., Osunmakinde, I.O.: Towards intelligence vision surveillance for police information systems. In: Silhavy, R. (eds) Cybernetics Perspectives in Systems. CSOC 2022. Lecture Notes in Networks and Systems, vol. 503 (2022). https://doi.org/10.1007/978-3-031-09073-8_13

  2. Felix Enigo, V.S.: An automated system for crime investigation using conventional and machine learning approach. In: Raj, J.S., Bashar, A., Ramson, S.R.J. (eds.) ICIDCA 2019. LNDECT, vol. 46, pp. 109–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38040-3_12

    Chapter  Google Scholar 

  3. Belesiotis, A., Papadakis, G., Skoutas, D.: Analyzing and predicting spatial crime distribution using crowdsourced and open data. ACM Trans. Spatial Algorithms Syst., 3(4), 12:1–12:31 (2018)

    Google Scholar 

  4. Esan, O.A., Osunmakinde, I.O.: A computer vision model for detecting suspicious behaviour from multiple cameras in crime hotspots using convolutional neural networks. In: Highlights in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. Communications in Computer and Information Science, vol. 1678 (2022). https://doi.org/10.1007/978-3-031-18697-4_16

  5. Khan, M., Ali, A., Alharbi, Y.: Predicting and preventing crime: a crime prediction model using san francisco crime data by classification techniques. Wiley Hindawi 22, 1–13 (2022). https://doi.org/10.1155/2022/4830411

    Article  Google Scholar 

  6. Stalidis, P., Semertzidis, T., Daras, P.: Examining deep learning architectures for crime classification and prediction. Forecasting 3, 741–762 (2021). https://doi.org/10.3390/forecast3040046

    Article  Google Scholar 

  7. Castro, U.R.M., Rodrigues, M.W., Brandao, W.C.: Predicting crimes by exploring supervised learning on heterogenous data. In: Proceedings of the 22nd International Conference on Enterprise Information Systems, vol. 1, pp. 524–531 (2020)

    Google Scholar 

  8. Rajadevi, R., Devi, E.M.R., Kumar, S.V.: Prediction of crime occurrence using multinomial logistic regression. Int. J. Innov. Tech. Exploring Eng. (IJITEE) 3(3), 1432–1435 (2020). https://doi.org/10.35940/ijitee.B7663.019320

  9. S. Wessels, South Africa Crime Dataset (2017). https://www.kaggle.com/slwessels/crime.statistics-for-South-Africa

  10. Yerpude, P., Gudur, V.: Predictive modelling of crime dataset using data mining. Int. J. Data Mining Knowl. Manag. Process (IJDKP) 7(4), 43–58 (2017)

    Article  Google Scholar 

  11. Garton, N., Niemi, J.: Multivariate temporal modeling of crime with dynamic linear models. PLOS ONE 14(7), (2019). https://doi.org/10.1371/journal.pone.0218375

  12. Jacob, B., Lefgren, L., Moretti, E.: The dynamic of criminal behaviour, evidence from weather shocks. J. Hum. Resour. 42(3), 489–527 (2007)

    Article  Google Scholar 

  13. Towers, S., Chen, S., Malik, A., Ebert, D.: Factors influencing temporal patterns in crime in a large American city: a predictive analytics perspective. PLoS ONE 13(10), (2018). https://doi.org/10.1371/journal. pone.0205151

  14. Rumi, S.K., Deng, K., Salim, F.D.: Crime event prediction with dynamic features. EPS Data Sci. 7(43), 1–27 (2018)

    Google Scholar 

  15. Yu, T., Yan, J., Lu, W.: Combining background subtraction and convolutional neural network for anomaly detection in pumping-unit surveillance. Algorithm 12(115), 1–13 (2019). https://doi.org/10.3390/a12060115

  16. S.F.C. dataset, San Francisco Crime Statistics 2005–20015 (2020). https://sfgov.org/crime-statistics

  17. Esan, O.A., Osunmakinde, I.O.: Towards intelligent vision surveillance for police information systems. In: CSOC, Lecturer notes in Networks and Systems, vol. 503 (2022)

    Google Scholar 

  18. Borkin, D., Nemeth, M., Michalconok, G., Mezentseva, O.: Adding additional features to improve time series prediction. Res. Papers Facuty Mater. Sci. Technol. 27(45), 72–78 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support made available by the University of South Africa and resources made available by Norfolk University, USA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esan, O.A., Osunmakinde, I.O. (2023). Application of Machine Learning in Predicting Crime Links on Specialized Features. In: Neri, F., Du, KL., Varadarajan, V., San-Blas, AA., Jiang, Z. (eds) Computer and Communication Engineering. CCCE 2023. Communications in Computer and Information Science, vol 1823. Springer, Cham. https://doi.org/10.1007/978-3-031-35299-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35299-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35298-0

  • Online ISBN: 978-3-031-35299-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics