Skip to main content

Effect of Some Derivatives of Pyridazin-3 (2h) – Ones on the in Vitro and in Situ Development of Different Pathogenic Fungi on Citrus Fruits

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD 2022)

Abstract

The fungal activity of a series of five molecules derived from Pyridazin-3 (2h)-ones was studied in vitro over two life-cycle stages of two strains of Phytophthora spp. And a strain of Cholletotrichum spp . They showed an activity on spore production more than the mycelial growth of the strain of Cholletotrichum spp. However, the two Phytophthora species tested are sensitive to the different molecules used and to varying degrees. The Isolates of P. parasitica and P. citrophthora were highly sensitive to molecules with a Cholro radical, A (5-(2 ‘-chloro-l ‘-Benzylidene-Pyridazin-3-one) and D (5-(4 ‘- chloro1 ‘-benzylidene) at a concentration of 50 ppm by inhibiting the two life stages (mycelial growth and sporulation). In contrast, the concentrations of the molecules necessary to reduce the mycelial growth of C. gloeosporioides by 50% and 90% are very strong, can reach up to 41275.66 ppm.

In situ, the preventive treatment of chopsticks is effective against P. parasitica and P. citrophthora. This treatment has helped to reduce the diseases by stopping the development of lesions on fragments treated by different molecules in different concentrations. The percentage reduction can reach up to 84.73% for P. parasitica and 100% for P. citrophthora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vanderweyen: La gommose à Phytophthora des agrumes au Maroc. Les agents pathogènes et la recherche de porte-greffe résistants. Al-Awamia. 51, 83–127 (1974)

    Google Scholar 

  2. Serrhini, M.N. : La résistance de Phytophthora citrophthora au metalaxyl, Univ. Cathol. Louvain, thèse, Belgique, 150p (1986)

    Google Scholar 

  3. Benyahia, H. Effet de la salinité sur le développement des maladies à Phytophthora des agrumes au Maroc. Thèse de 3ème cycle, université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Maroc (1998), 170p (1998).

    Google Scholar 

  4. Timmer, L.W.; Menge, J.A.: Phytophthora– induced diseases. In: Whiteside, J.O., Garnsey, S.M., Timmer, L.W. (eds.) Compendium of Citrus Diseases, pp. 22–24. APS Press, St Paul (1998)

    Google Scholar 

  5. Whiteside, J.O.; Garnsey, S.M.; Timmer, L.W., Eds: Compendium of Citrus Diseases. APS Press, St. Paul (1988)

    Google Scholar 

  6. Timmer, L.W., Darhower, H.M., Zitko, S.E., Peever, T.L., Ibañez, A.M., Bushong, P.M.: Environmental factors affecting the severity of Alternaria brown spot of citrus and their potential use in timing fungicide applications. Plant Dis. 84, 638–643 (2000)

    Article  Google Scholar 

  7. Benyahia, H.: Amélioration de la résistance des porte-greffes d’agrumes vis-à-vis des contraintes biotiques et abiotiques, thèse de Doctorat. Université Mohamed Ben Abdellah, Faculté des Sciences Dhar El Mahraz (2008)

    Google Scholar 

  8. Boudoudou, D., Fadli, A., Talha, A., Bourachdi, Y., Douira, A.., Benyahia, H. : Effect of seasonal and citrus rootstocks on inoculum density of Phytophthora sp. In: Citrus Orchard in a Heavy Soil of the Gharb Region of Morocco. Biolife 3(2), 367–377 (2015)

    Google Scholar 

  9. Klotz, J.: Color Handbook of Citrus Diseases. University of California, Division of Agricultural Sciences, 74p (1961)

    Google Scholar 

  10. Laville, E.: Use of a new systemic fungicide, Aliette, in the control of citrus gummosis due to Phytophthora. Fruits 34, 35–41 (1979)

    Google Scholar 

  11. Sandler, H.A., Timmer, L.W., Graham, J.H., Zitko, S.E.: Effect of fungicide applications on populations of Phytophthora parasitica and feeder root densities and fruit yields of Citrus trees. Plant Dis. 73, 902–906 (1989)

    Article  Google Scholar 

  12. Farih, A., Tsao, P.H., Menge, J.A.: Fungitoxic activity of fosethyl aluminium on growth, sporulation and germination of Phytophthora parasitica and P. citrophtora. Phytopathology 71, 934–936 (1981)

    Article  Google Scholar 

  13. Timmer, L.W., Castle, W.S.: Effectiveness of metalaxyl and fosetyl AI against Phytophthora parasitica on sweet orange. PI. Dis. 69, 741–743 (1985)

    Article  Google Scholar 

  14. Dercks, W., Buchenauer, H.: Untersuchungenzum Einfluss von Alumiaiumfosetyl auf den pflanzlichen Phenolstoffwechsel in den Pathogen -Wirt – Beziehungen Phytophthora fragaria - Erdbeere und Bremialactuca - Salat. J. Phytopathol. 115, 37–55 (1986)

    Article  Google Scholar 

  15. Bompeix, G., Saindrenan, P.: ln vitro antifungal activity of fosetyl·Al and phosphorous acid on Phytophthora species. Fruits 39, 777–786 (1984)

    Google Scholar 

  16. Jian, W., Baoan, S., Hongjun, C., Bhadury, P., Deyu, H.: Synthesis and antifungal activity of 5-Chloro-6-Phenylpyridazin-3(2H)-one derivatives. Molecules 14, 3676–3687 (2009)

    Google Scholar 

  17. SomilaKhaidem, S., Sarveswari, R.G., Vijayakumar, V.: Synthesis and biological evaluation of some pyridazinone derivatives. Int. J. Res. Pharm. Chem. 2, 2231–2781 (2012)

    Google Scholar 

  18. Benmoussa, A., et al.: Synthesis and antimicrobial properties of some Pyridazin-3-Thiones derivatives. Int. J. PharmTech. Res. CODEN 4(4), 1591–1594 (2012). ISSN:0974-4304

    Google Scholar 

  19. El Marrakchi, L., et al.: Synthesis and antioxidant properties of some 5-benzyl-6-methylpyridazin3(2H)-ones derivatives. J. Chem. Pharmaceut. Res. 6(11), 70–74 (2012)

    Google Scholar 

  20. Kasnar, B., Wise, D.S., Kucera, L.S., Drach, J.C., Townsend, L.B.: Synthesis of 2’,3’-dideoxy- and3’-azido-2’,3’-dideoxypyridazine nucleosides as potential antiviral agents. Nucleos. Nucleot. Nucl. 13, 459–479 (1994)

    Article  Google Scholar 

  21. Zou, X.J., Jin, G.Y., Yang, Z.: Synthesis of hydrazides of 1-aryl-1,4-dihydro-6-methyl-4-pyridazinone and their antiviral activity against TMV. Chin. J. Appl. Chem. 18, 599–601 (2001)

    Google Scholar 

  22. Hiroshi, M., Akio, M.: Pyridazine compound and use thereof. 1767529. EP Patent. 2005[Chem. Abstr.2005, 144, 51595]

    Google Scholar 

  23. Shinichiro, S.; Shinichiro, M.A.; Akio, M.: Pyridazine compound and bactericide containing the same. JP Patent 2007182430 (2005). [Chem. Abstr. 147, 166329]

    Google Scholar 

  24. Hoshino, K.; Koike, Y.: Halopyridazines as insecticides. JP Patent 2005263694 (2007)

    Google Scholar 

  25. Ishimukai, M., Matsusaka, M. : Insecticides comprising dihalopyridazines. JP Patent 2007077140 (2007)

    Google Scholar 

  26. Yang, H.Z., et al. : Method for preparation of 3-substituted oxypyridazine derivatives with herbicidal activity. CN Patent 101058562[ (2005). Chem. Abstr, 14 541897]

    Google Scholar 

  27. Yang, H.Z., et al.: Method for preparation of 3-substituted aminopyridazine derivatives with herbicidal activity.CN Patent 101058563 (2007). [Chem. Abstr, 147: 541889]

    Google Scholar 

  28. MassudAllag, S.; Anwair. 2004.Synthesis, lipophilicity and Antifungal properties of 3(2h)- pyridazinone derivatives. Under the supervision of Professor PéterMátyus, Ph.D

    Google Scholar 

  29. Kinugawa, J., Ochiai, M., Yamamoto, H.: Studies on Fungicides. III: synthesis and antifungal activity of some Pyridazine derivatives. Yakugaku Zasshi 80, 1559–1564 (1960)

    Article  Google Scholar 

  30. Akio, M.: Pyridazine compound and use thereof. WO Patent 2007066601 (2007). [Chem. Abstr. 2007, 147, 72775]

    Google Scholar 

  31. Trah, S.; Lamberth, C.; Wedeborn, S.: Novel pyridazine derivatives. WO Patent 2008049584 (2008) [Chem. Abstr. 148, 495967]

    Google Scholar 

  32. Thomas, M., et al.: Application of cross-coupling and metalation chemistry of 3(2H)-Pyridazinones to Fungicide and herbicide discovery. J. HeterocyclicChem. 42 427 (2005)

    Google Scholar 

  33. Liu, W.D., Li, Z.W., Li, Z.Y., Wang, X.G., Gao, B.D.: Synthesis and biological activity of methylN-methoxy-N-[2-(1,6-dihydro-1-substituent-6-oxo-pyridazin yloxymethyl)phenl]carbamates. Chin. J. Org. Chem. 25, 445–448 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Boudoudou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boudoudou, D. et al. (2023). Effect of Some Derivatives of Pyridazin-3 (2h) – Ones on the in Vitro and in Situ Development of Different Pathogenic Fungi on Citrus Fruits. In: Kacprzyk, J., Ezziyyani, M., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development. AI2SD 2022. Lecture Notes in Networks and Systems, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-35248-5_49

Download citation

Publish with us

Policies and ethics