Skip to main content

Identification of the Parameters of the Lithium-Ion Battery Used in Electric Vehicles for the SOC Estimation

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 714))

Abstract

With the development of new energy vehicle technology, lithium-ion batteries are an important component of energy storage systems used in various applications such as electric vehicles. Especially since this type of battery is the most used in the electric vehicle industry. The battery management systems used to control the state of the battery have been widely researched. The accuracy of the battery state is heavily reliant on the battery model parameters precision, and the accuracy of the estimate technique is directly proportional to the model used to characterize the batteries parameters. We apply a piecewise linear approximation with variable coefficients to express the intrinsically nonlinear link between the open-circuit voltage (VOC) and the battery's state of charge (SOC), while using a resistance–capacitance (RC)-equivalent circuit to simulate the battery dynamics. Both data from a simulated battery model and experimental data were used, to validate the moving window least squares parameter-identification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuma, M.U., Koroglu, T.: A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy Rev. 42, 517–531 (2015)

    Google Scholar 

  2. Kennedy, B., Patterson, D., Camilleri, S.: Use of lithium-ion batteries in electric vehicles. J Power Sour 90, 156–162 (2000)

    Article  Google Scholar 

  3. Tian, Y., Xia, B., Wang, M., Sun, W., Xu, Z.: Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles. Energies 7, 8446–8464 (2014)

    Google Scholar 

  4. Xia, B., Wang, H., Wang, M., Sun,W., Xu, Z., Lai, Y.: A new method for state of charge estimation of lithiumion battery based on strong tracking cubature Kalman filter. Energies 8, 13458–13472 (2015)

    Google Scholar 

  5. Tran, M.-K., Fowler, M.: Sensor fault detection and isolation for degrading lithium-ion batteries in electric vehicles using parameter estimation with recursive least squares. Batteries 6, 1 (2020)

    Google Scholar 

  6. Mevawalla, A., Panchal, S., Tran, M.-K., Fowler, M., Fraser, R.: Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: tab and surface temperature, separator, electrolyte resistance, Anode-Cathode Irreversible and Reversible Heat. Batteries 6, 61 (2020)

    Google Scholar 

  7. Chen, B., Ma, H., Fang, H., Fan, H., Luo, K., Fan, B.: An approach for state of charge estimation of Li-ion battery based on Thevenin equivalent circuit model. In: Proceedings of the 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), Zhangiiaijie, China, 24–27 August 2014, pp. 647–652. IEEE, Piscataway, NJ, USA (2014)

    Google Scholar 

  8. Cheng, Z., Zhang, Q.Y., Zhang, Y.H.: Online state-of-charge estimation of LI-ion battery based on the second-order RC model. Adv. Mater. Res. 805–806, 1659–1663 (2013)

    Article  Google Scholar 

  9. Xu, J.: Accurate Estimation of SOC of Power Battery Pack Based on Kalman Filter. Master’s Thesis, Hangzhou Dianzi University, Hangzhou, China (2009)

    Google Scholar 

  10. Song, J., Joonam, P., Williams, A., et al.: 3D electrochemical model for a Single Secondary and its application for operando analysis. Nano Energy 62, 810–817 (2019)

    Article  Google Scholar 

  11. Lin, C., Tang, A., Xing, J.: Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles. Appl. Energy 207, 394–404 (2017)

    Article  Google Scholar 

  12. Zhang, H., Na, W., Kim, J.: State-of-charge estimation of the lithium-ion battery using neural network based on an improved thevenin circuit model. In: 2018 IEEE Transportation Electrification Conference and Expo(IETC) (2018)

    Google Scholar 

  13. Lai, X., Zheng, Y., Sun, T.: A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochimica Acta 259, 566–577 (2018). https://doi.org/10.1016/j.electacta.2017.10.153

    Article  Google Scholar 

  14. Zhu, R.: Research on High-Precision Modeling and Multi-State Estimation Methods for Lithium-ion Power Batteries. Master’s Thesis, Shandong University, Qingdao, Shandong (2021)

    Google Scholar 

  15. Yatsui, M.W., Bai, H.: Kalman filter based state-of-charge estimation for lithium-ion batteries in hybrid electric vehicles using pulse charging. In: Proceedings of the Vehicle Power and Propulsion Conference, 6–9 September 2011, pp. 1–5. Chicago, IL, USA (2011)

    Google Scholar 

  16. Tian, Y., Xia, B., Sun, W., Xu, Z., Zheng, W.: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter. J. Power Sources 270, 619–626 (2014)

    Google Scholar 

  17. Zou, Z., Xu, J., Mi, C., Cao, B., Chen, Z.: Evaluation of model based state of charge estimation methods for lithium-ion batteries. Energies 7, 5065–5082 (2014)

    Google Scholar 

  18. Yun, Z., Zhang, C., Zhang, X.: State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles. IET Control Theory Appl. 8, 160–167 (2013)

    MathSciNet  Google Scholar 

  19. Xia, B., Chen, G., Zhou, J., Yang, Y., Huang, R., Wang, E., Lai, Y., Wang, M., Wang, H.: Online Parameter Identification and Joint Estimation of the State of Charge and the State of Health of Lithium-Ion Batteries Considering the Degree of Polarization

    Google Scholar 

  20. Snihir I, Rey W, Verbitskiy E, Belfadhel-Ayeb A, Notten PHL. Battery open-circuit voltage estimation by a method of statistical analysis. J Power Sources 159, 1484–1487 (2006)

    Google Scholar 

  21. Zheng, L., Zhang, L., Zhu, J., Wang, G., Jiang, J.: Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model. Appl. Energy 180, 424–434 (2016)

    Article  Google Scholar 

  22. Roscher, M.A., Sauer, D.U.: Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries. J. Power Sources 196, 331–336 (2011)

    Article  Google Scholar 

  23. Lavigne, L., Sabatier, J., Francisco, J.M., Guillemard, F., Noury, A.: Lithium-ion open circuit voltage (ocv) curve modelling and its ageing adjustment. J. Power Sources 324, 694–703 (2016)

    Google Scholar 

  24. Mejdoubi, A.E., Oukaour, A., Chaoui, H., Gualous, H., Sabor, J., Slamani, Y.: State-of-charge and state-of-health lithium-ion batteries’ diagnosis according to surface temperature variation. IEEE Trans. Ind. Electron. 63, 2391–2402 (2016)

    Google Scholar 

  25. Savanth, P., Shailesh, K.R.: Reduction of parameters in a lithium ion cell model by experimental validation of relationship between ocv and soc. In: Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 19 November 2016, pp. 1–5. Coimbatore, India (2016)

    Google Scholar 

  26. Nejad, S., Gladwin, D.T., Stone, D.A.: On-chip implementation of extended kalman filter for adaptive battery states monitoring. In: Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, 23–26 October 2016, pp. 5513–5518. Florence, Italy (2016)

    Google Scholar 

  27. Diao, W.: Data for: Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells (2021). https://doi.org/10.17632/c35zbmn7j8.1

  28. dos Reis, G., Strange, C., Li, M.Y.S.: Lithium-ion battery data and where to find it” a School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FD, UK. b Centro de Matemática e Aplicações (CMA), FCT, UNL, Quinta da Torre, 2829–516 Caparica, Portugal. c Indian Institute of Technology, Kanpur, Indi

    Google Scholar 

  29. Ali, M., et al.: An online data-driven model identification and adaptive state of charge estimation approach for lithium-ion-batteries using the lagrange multiplier method. Energies 11(11), 2940 (2018). https://doi.org/10.3390/en11112940

  30. Sun, D., et al.: State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. Energy 214, 119025 (2021). https://doi.org/10.1016/j.energy.2020.119025

  31. Tran, M.-K., DaCosta, A., Mevawalla, A., Panchal, S., Fowler, M.: Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO NCA. Batteries 7, 51 (2021). https://doi.org/10.3390/batteries7030051

    Article  Google Scholar 

  32. Cuia, Z., Hua, W., Zhanga, G., Zhanga, Z., Chenb, Z.: An extended Kalman filter based SOC estimation method for Li-ion Battery. In: 2021 The 2nd International Conference on Power Engineering (ICPE 2021), 09–11 December 2021. Nanning, Guangxi, China (2021)

    Google Scholar 

  33. Mazzi, Y., Ben Sassi, H., Errahimi, F., Es-Sbai, N.: State of charge estimation using extended kalman filter

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasri Elmehdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elmehdi, N., Tarik, J., Benchikh, S., Saadi, N. (2023). Identification of the Parameters of the Lithium-Ion Battery Used in Electric Vehicles for the SOC Estimation. In: Kacprzyk, J., Ezziyyani, M., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development. AI2SD 2022. Lecture Notes in Networks and Systems, vol 714. Springer, Cham. https://doi.org/10.1007/978-3-031-35245-4_42

Download citation

Publish with us

Policies and ethics