Skip to main content

Configurable Dynamics of Electromagnetic Suspension by Fuzzy Takagi-Sugeno Controller

  • Conference paper
  • First Online:
Advanced, Contemporary Control (PCC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 708))

Included in the following conference series:

  • 153 Accesses

Abstract

This elaboration presents the synthesis of the Takagi-Sugeno type Fuzzy Logic controller realizing the programmable parameters of the state feedback controller together with the steady state current for the active magnetic levitation system. Closed-loop dynamics was calculated precisely with respect to the requested dynamics. Two cases were considered: fixed- and variable-closed-loop dynamics. The Fuzzy Logic Controller was considered under four scenarios with linear, nonlinear, and constant in-range output. The study was supported by simulations and experimental investigations. The position of the levitating sphere stands as an illustration of the system in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali Awad, O., Laith Salim, I.: Fuzzy PID gain scheduling controller for networked control system. Iraqi J. Sci. 210–216 (2021) 1

    Google Scholar 

  2. Kamala, N., Thyagarajan, T., Renganathan, S.: Fuzzy gain scheduled multivariable control of nonlinear system using PSO based PID. 403–408, 3892–3899 (2012)

    Google Scholar 

  3. Tran, H.K., Lam, P.D., Trang, T.T., Nguyen, X.T., Nguyen, H.N.: Fuzzy gain scheduling control apply to an RC hovercraft. Int. J. Electr. Comput. Eng. 10, 2434–2440 (2020) 8

    Google Scholar 

  4. Zhao, Z.Y., Tomizuka, M., Isaka, S.: Fuzzy gain scheduling of PID controllers. IEEE Trans. Syst. Man Cybernet. 23, 1392–1398 (1993)

    Article  Google Scholar 

  5. Hady, F., Abuelenin, S.: Design and simulation of a fuzzy-supervised PID controller for a magnetic levitation system. Studies Inform. Control 17, (2008) 10

    Google Scholar 

  6. Unni, A.C., Junghare, A.S., Mohan, V., Ongsakul, W.: PID, fuzzy and LQR controllers for magnetic levitation system. Institute of Electrical and Electronics Engineers Inc., (2016) 11

    Google Scholar 

  7. Yadav, S., Tiwari, J.P., Nagar, S.K.: Digital control of magnetic levitation system using fuzzy logic controller (2012)

    Google Scholar 

  8. Pilat, A., Turnau, A.: Self-organizing fuzzy controller for magnetic levitation system. In: Computer Methods and Systems, CMS 14–16 November, Kraków, Poland, 2005, pp. 101–106 (2005)

    Google Scholar 

  9. Pilat, A.: Control of magnetic levitation systems. PhD thesis, AGH, Krakow (2002)

    Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernet. SMC 15, 116–132 (1985)

    Google Scholar 

  11. De Freitas Nunes, E.A., et al.: Proposal of a fuzzy controller for radial position in a bearingless induction motor. IEEE Access 7, 114808–114816 (2019)

    Article  Google Scholar 

  12. Ahmad, A.K., Saad, Z., Osman, M.K., Isa, I.S., Sadimin, S., Abdullah, S.S.: Control of magnetic levitation system using fuzzy logic control. In: Proceeding - 2nd International Conference Computational Intelligence, Modelling and Simulation, CIMSim 2010, pp. 51–56 (2010)

    Google Scholar 

  13. García-Gutiérrez, G., et al.: Fuzzy logic controller parameter optimization using metaheuristic cuckoo search algorithm for a magnetic levitation system. Appl. Sci., 9(12) (2019)

    Google Scholar 

  14. Zhang, J., Wang, X., Shao, X.: Design and real-time implementation of Takagi-Sugeno fuzzy controller for magnetic levitation ball system. IEEE Access 8, 38221–38228 (2020)

    Article  Google Scholar 

  15. David, R.-C. Dragos, C.-A., Bulzan, R.-G., Precup, R.-E., Petriu, E.M., Radac, M.-B.: An approach to fuzzy modeling of magnetic levitation systems. Technical Report A12 (2012)

    Google Scholar 

  16. Ma, Z., Liu, G., Liu, Y., Yang, Z., Zhu, H.: Research of a six-pole active magnetic bearing system based on a fuzzy active controller. Electronics 11(11) (2022)

    Google Scholar 

  17. Minihan, T.P., Lei, S., Sun, G., Palazzolo, A., Kascak, A.F., Calvert, T.: Large motion tracking control for thrust magnetic bearings with fuzzy logic, sliding mode, and direct linearization. J. Sound Vib. 263(3), 549–567 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Santisteban, J.A., Mendes, S.R.A., Sacramento, D.S.: A fuzzy controller for an axial magnetic bearing. In: 2003 IEEE International Symposium on Industrial Electronics (Cat. No.03TH8692), vol. 2, pp. 991–994 (2003)

    Google Scholar 

  19. Regaya, C.B., Zaafouri, A., Chaari, A.: A new sliding mode speed observer of electric motor drive based on fuzzy-logic. Technical Report 3

    Google Scholar 

  20. Zheng, W., Xia, B., Wang, W., Lai, Y., Wang, M., Wang, H.: State of charge estimation for power lithium-ion battery using a fuzzy logic sliding mode observer. Energies 12(13) (2019)

    Google Scholar 

  21. Lin, F.-C., Yang, S.-M.: Adaptive fuzzy logic-based velocity observer for servo motor drives. Technical Report

    Google Scholar 

  22. Pilat, A.K.: Active Magnetic Levitation Systems. AGH University of Science and Technology Press, Krakow, Poland (2013)

    MATH  Google Scholar 

  23. Pilat, A.: Analytical modeling of active magnetic bearing geometry. Appl. Math. Model. 34, (2010)

    Google Scholar 

  24. Nguyen, H., Prasad, R.: Fuzzy Modeling and Control: Selected Works of M. CRC Press (1999)

    Google Scholar 

  25. Joh, J., Chen, Y.-H., Langari, R.: On the stability issues of linear Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 6, 402–410 (1998)

    Article  Google Scholar 

  26. Teixeira, M.C.M., Zak, S.H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Fuzzy Syst. 7(2), 133–142 (1999)

    Article  Google Scholar 

  27. Pilat, A.K.: Fltune - automatic fuzzy logic controler desing toolbox. Technical Report, AGH University of Science and Technology, Department of Automatic Control and Robotics (2010)

    Google Scholar 

  28. Pilat, A.K., Sikora, B., Zrebiec, J.: Investigation of lateral stiffness and damping in levitation system with opposite electromagnets*. In: 2019 12th Asian Control Conference (ASCC), pp. 1210–1215 (2019)

    Google Scholar 

  29. Sikora, B.M., Pilat, A.K.: Analytical modeling and experimental validation of the six pole axial active magnetic bearing. Appl. Math. Model. 104, 50–66 (2022)

    Article  Google Scholar 

  30. Milanowski, H., Pilat, A.K.: Comparison of identified and simscape model of human leg motion (2020) 09

    Google Scholar 

  31. Borkowski, M., Pilat, A.K.: Customized data center cooling system operating at significant outdoor temperature fluctuations. Appl. Energy 306, 117975 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Krzysztof Pilat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pilat, A.K., Milanowski, H., Bieszczad, R., Sikora, B. (2023). Configurable Dynamics of Electromagnetic Suspension by Fuzzy Takagi-Sugeno Controller. In: Pawelczyk, M., Bismor, D., Ogonowski, S., Kacprzyk, J. (eds) Advanced, Contemporary Control. PCC 2023. Lecture Notes in Networks and Systems, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-031-35170-9_29

Download citation

Publish with us

Policies and ethics