Skip to main content

A Gull Species Recognizes MHC-II Diversity and Dissimilarity Using Odor Cues

  • Conference paper
  • First Online:
Chemical Signals in Vertebrates 15 (CSiV 2021)

Included in the following conference series:

Abstract

The major histocompatibility complex (MHC) plays a crucial role in the resistance to parasites in vertebrates and is thus often suggested to be an important force driving social interactions, including mating preference. However, the phenotypic cues used by individuals to assess the MHC characteristics of conspecifics are generally unknown. Here, we used behavioral tests to investigate whether, in black-legged kittiwakes, females use odor cues to distinguish male MHC-II diversity and MHC-II dissimilarity. We found that females took less time to peck at an odor sample coming from a male with high or low MHC-II diversity compared to intermediate MHC-II diversity. However, this result is due to the single individual who has only one MHC-II allele. When excluding this individual, females took less time to peck at an odor sample coming from a male with high MHC-II diversity. In addition, when the odor sample came from a male with higher MHC-II dissimilarity, females took less time to peck at the sample, but once they pecked at it, they delayed the use of the sample. Altogether, our results add evidence for olfactory recognition of MHC characteristics in birds, but further studies are needed to determine whether kittiwakes use this ability to optimize fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abankwah, V., Deeming, D. C., & Pike, T. W. (2020). Avian olfaction: A review of the recent literature. Comparative Cognition & Behavior Reviews, 15, 149–161

    Google Scholar 

  • Amo, L., Amo de Paz, G., Kabbert, J., & Machordom, A. (2022). House sparrows do not exhibit a preference for the scent of potential partners with different MHC-I diversity and genetic distances. PLoS One, 17, e0278892. https://doi.org/10.1371/journal.pone.0278892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang, B. G., & Cobb, S. (1968). The size of the olfactory bulb in 108 species of birds. Auk, 85, 55–61.

    Article  Google Scholar 

  • Benskin, C. M. W. H., Wilson, K., Jones, K., & Hartley, I. R. (2009). Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biological Reviews, 84, 349–373. https://doi.org/10.1111/j.1469-185X.2008.00076.x

    Article  PubMed  Google Scholar 

  • Bonadonna, F., & Gagliardo, A. (2021). Not only pigeons: Avian olfactory navigation studied by satellite telemetry. Ethology Ecology and Evolution, 33(3), 273–289.

    Article  Google Scholar 

  • Caro, S. P., & Balthazart, J. (2010). Pheromones in birds: myth or reality? Journal of Comparative Physiology A, 196(10), 751–766. https://doi.org/10.1007/s00359-010-0534-4

    Article  CAS  Google Scholar 

  • Caro, S. P., Balthazart, J., & Bonadonna, F. (2015). The perfume of reproduction in birds: Chemosignaling in avian social life. Hormones and Behavior, 68, 25–42. https://doi.org/10.1016/j.yhbeh.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  • Dunn, P. O., Bollmer, J. L., Freeman-Gallant, C. R., & Whittingham, L. A. (2013). MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution, 67(3), 679–687.

    Article  CAS  PubMed  Google Scholar 

  • Gill, V. A., & Hatch, S. A. (2002). Components of productivity in black-legged kittiwakes Rissa tridactyla: Response to supplemental feeding. Journal of Avian Biology, 33(2), 113–126.

    Article  Google Scholar 

  • Grieves, L. A., Gloor, G. B., Bernards, M. A., & MacDougall-Shackleton, E. A. (2019). Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Animal Behaviour, 158, 131–138.

    Article  Google Scholar 

  • Griggio, M., Biard, C., Penn, D. J., & Hoi, H. (2011). Female house sparrows “count on” male genes: Experimental evidence for MHC-dependent mate preference in birds. BMC Evolutionary Biology, 11(44), 1–7. https://doi.org/10.1186/1471-2148-11-44

    Article  Google Scholar 

  • Grogan, K. E., Harris, R. L., Boulet, M., & Drea, C. M. (2019). Genetic variation at MHC class II loci influences both olfactory signals and scent discrimination in ring-tailed lemurs. BMC Evolutionary Biology, 19(1), 1–16.

    Article  CAS  Google Scholar 

  • Hagelin, J., & Jones, I. L. (2007). Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication? Auk, 124(3), 741–761.

    Article  Google Scholar 

  • Hirao, A., Aoyama, M., & Sugita, S. (2009). The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behavioural Processes, 80(2), 115–120.

    Article  PubMed  Google Scholar 

  • Hoover, B., Alcaide, M., Jennings, S., Sin, S. Y. W., Edwards, S. V., & Nevitt, G. A. (2018). Ecology can inform genetics: disassortative mating contributes to MHC polymorphism in Leach’s storm-petrels (Oceanodroma leucorhoa). Molecular Ecology, 27(16), 3371–3385.

    Article  Google Scholar 

  • Kalbe, M., Eizaguirre, C., Dankert, I., Reusch, T. B. H., Sommerfeld, R. D., Wegner, K. M., & Milinski, M. (2009). Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proceedings of the Royal Society B, 276(1658), 925–934. https://doi.org/10.1098/rspb.2008.1466

    Article  PubMed  Google Scholar 

  • Kamiya, T., O’Dwyer, K., Westerdahl, H., Senior, A., & Nakagawa, S. (2014). A quantitative review of MHC-based mating preference: The role of diversity and dissimilarity. Molecular Ecology, 23(21), 5151–5163.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(1), 1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  • Leclaire, S., Mulard, H., Wagner, R. H., Hatch, S. A., & Danchin, E. (2009). Can Kittiwakes smell? Experimental evidence in a Larid species. Ibis, 151(3), 584–587.

    Article  Google Scholar 

  • Leclaire, S., van Dongen, W. F., Voccia, S., Merkling, T., Ducamp, C., Hatch, S. A., Blanchard, P., Danchin, É., & Wagner, R. H. (2014). Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Scientific Reports, 4, 6920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclaire, S., Strandh, M., Mardon, J., Westerdahl, H., & Bonadonna, F. (2017). Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proceedings of the Royal Society B, 284(1846), 20162466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leclaire, S., Strandh, M., Dell’Ariccia, G., Gabirot, M., Westerdahl, H., & Bonadonna, F. (2019). Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Molecular Ecology, 28(4), 833–846.

    Article  PubMed  Google Scholar 

  • Lie, H. C., Rhodes, G., & Simmons, L. W. (2008). Genetic diversity revealed in human faces. Evolution, 62(10), 2473–2486. https://doi.org/10.1111/j.1558-5646.2008.00478.x

    Article  PubMed  Google Scholar 

  • Løvlie, H., Gillingham, M. A., Worley, K., Pizzari, T., & Richardson, D. S. (2013). Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proceedings of the Royal Society London B, 280(1769), 20131296.

    Google Scholar 

  • Madsen, T., & Ujvari, B. (2006). MHC class I variation associates with parasite resistance and longevity in tropical pythons. Journal of Evolutionary Biology, 19(6), 1973–1978. https://doi.org/10.1111/j.1420-9101.2006.01158.x

    Article  CAS  PubMed  Google Scholar 

  • Manning, C., Wakeland, E., & Potts, W. (1992). Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature, 360, 581–583. https://doi.org/10.1038/360581a0

    Article  CAS  PubMed  Google Scholar 

  • Migalska, M., Sebastian, A., & Radwan, J. (2019). Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proceedings of the National Academy of Sciences, 116(11), 5021–5026.

    Article  CAS  Google Scholar 

  • Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annual Review of Ecology Evolution and Systematics, 37, 159–186.

    Article  Google Scholar 

  • Milinski, M., Griffiths, S., Wegner, K. M., Reusch, T. B. H., Haas-Assenbaum, A., & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proceedings of the National Academy of Sciences USA, 102(12), 4414–4418. https://doi.org/10.1073/pnas.0408264102

    Article  CAS  Google Scholar 

  • Nowak, M. A., Tarczy-Hornoch, K., & Austyn, J. M. (1992). The optimal number of major histocompatibility complex molecules in an individual. Proceedings of the National Academy of Sciences USA, 89(22), 10896–10899. https://doi.org/10.1073/pnas.89.22.10896

    Article  CAS  Google Scholar 

  • Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741–758.

    Article  PubMed  Google Scholar 

  • Pineaux, M., Merkling, T., Danchin, E., Hatch, S., Duneau, D., Blanchard, P., & Leclaire, S. (2020). Sex and hatching order modulate the association between MHC-II diversity and fitness in early-life stages of a wild seabird. Molecular Ecology, 29(17), 3316–3329.

    Article  PubMed  Google Scholar 

  • Pineaux, M., Merkling, T., Danchin, E., Hatch, S. A., Leclaire, S., & Blanchard, P. (2022). MHC-II distance between parents predicts sex allocation decisions in a genetically monogamous bird. Behavioral Ecology, 33(1), 245–251.

    Article  Google Scholar 

  • Potier, S. (2020). Olfaction in raptors. Zoological Journal of the Linnean Society, 189(3), 713–721. https://doi.org/10.1093/zoolinnean/zlz121

    Article  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rekdal, S. L., Anmarkrud, J. A., Lifjeld, J. T., & Johnsen, A. (2019). Extra-pair mating in a passerine bird with highly duplicated major histocompatibility complex class II: Preference for the golden mean. Molecular Ecology, 28(23), 5133–5144.

    Article  PubMed  Google Scholar 

  • Rekdal, S. L., Anmarkrud, J. A., Lifjeld, J. T., & Johnsen, A. (2021). Elevated phytohaemagglutinin-induced skin-swelling response at an intermediate number of MHC class II alleles in bluethroat nestlings. Journal of Avian Biology, 52(5). https://doi.org/10.1111/jav.02734

  • Richardson, D. S., Komdeur, J., Burke, T., & von Schantz, T. (2005). MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proceedings of the Royal Society B, 272, 759–767. https://doi.org/10.1098/rspb.2004.3028

    Article  PubMed  PubMed Central  Google Scholar 

  • Roved, J., Hansson, B., Tarka, M., Hasselquist, D., & Westerdahl, H. (2018). Evidence for sexual conflict over major histocompatibility complex diversity in a wild songbird. Proceedings of the Royal Society B, 285(1884), 20180841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandberg, M., Eriksson, L., Jonsson, J., Sjöström, M., & Wold, S. (1998). New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. Journal of Medicinal Chemistry, 41(14), 2481–2491.

    Article  CAS  PubMed  Google Scholar 

  • Sarah, Leclaire Maxime, Pineaux Pierrick, Blanchard Joël, White Scott A., Hatch (2023) Microbiota composition and diversity of multiple body sites vary according to reproductive performance in a seabird Molecular Ecology 32(9) 2115–2133. https://doi.org/10.1111/mec.v32.9. https://doi.org/10.1111/mec.16398

  • Schubert, N., Nichols, H. J., & Winternitz, J. C. (2021). How can the MHC mediate social odor via the microbiota community? A deep dive into mechanisms. Behavioral Ecology, 32(3), 359–373.

    Article  Google Scholar 

  • Sebastian, A., Herdegen, M., Migalska, M., & Radwan, J. (2016). amplisas: A web server for multilocus genotyping using next-generation amplicon sequencing data. Molecular Ecology Resources, 16(2), 498–510.

    Article  CAS  PubMed  Google Scholar 

  • Sherborne, A. L., Thom, M. D., Paterson, S., Jury, F., Ollier, W. E., Stockley, P., Beynon, R. J., & Hurst, J. L. (2007). The genetic basis of inbreeding avoidance in house mice. Current Biology, 17(23), 2061–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds, M. J., & Gough, S. C. L. (2007). The HLA region and autoimmune disease: Associations and mechanisms of action. Current Genomics, 8(7), 453–465. https://doi.org/10.2174/138920207783591690

    Article  PubMed  PubMed Central  Google Scholar 

  • Slade, J. W. G., Watson, M. J., & MacDougall-Shackleton, E. A. (2017). Birdsong signals individual diversity at the major histocompatibility complex. Biology Letters, 13(11), 20170430. https://doi.org/10.1098/rsbl.2017.0430

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiger, S. S., Fidler, A. E., Valcu, M., & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proceedings of the Royal Society B, 275(1649), 2309–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strandh, M., Westerdahl, H., Pontarp, M., Canback, B., Dubois, M.-P., Miquel, C., Taberlet, P., & Bonadonna, F. (2012). Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proceedings of the Royal Society B, 279(1746), 4457–4463. https://doi.org/10.1098/rspb.2012.1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner, K. M., Kalbe, M., Schaschl, H., & v& Reusch TBH. (2004). Parasites and individual major histocompatibility complex diversity—an optimal choice? Microbes and Infection, 6(12), 1110–1116. https://doi.org/10.1016/j.micinf.2004.05.025

    Article  CAS  PubMed  Google Scholar 

  • Whittaker, D. J., & Hagelin, J. C. (2021). Female-based patterns and social function in avian chemical communication. Journal of Chemical Ecology, 47(1), 43–62. https://doi.org/10.1007/s10886-020-01230-1

    Article  CAS  PubMed  Google Scholar 

  • Woelfing, B., Traulsen, A., Milinski, M., & Boehm, T. (2009). Does intra-individual major histocompatibility complex diversity keep a golden mean? Philosophical Transactions of the Royal Society B, 364(1513), 117–128. https://doi.org/10.1098/rstb.2008.0174

    Article  Google Scholar 

  • Zelano, B., & Edwards, S. V. (2002). An MHC component to kin recognition and mate choice in birds: Predictions, progress, and prospects. The American Naturalist, 160(S6), S225–S237.

    Article  PubMed  Google Scholar 

  • Zhang, J. X., Wei, W., Zhang, J. H., & Yang, W. H. (2010). Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chemical Senses, 35(5), 375–382.

    Article  CAS  PubMed  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to T. Rinaud and C. Maillotte for their help in the field. This study is part of the Laboratoire d’Excellence (LABEX) entitled TULIP (ANR-10- LABX-41). This work was supported by grants from the French Polar Institute (IPEV; Program 1162 to SL) and the Fondation Fyssen (to SL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Leclaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pineaux, M., Blanchard, P., Ribeiro, L., Hatch, S.A., Leclaire, S. (2023). A Gull Species Recognizes MHC-II Diversity and Dissimilarity Using Odor Cues. In: Schaal, B., Rekow, D., Keller, M., Damon, F. (eds) Chemical Signals in Vertebrates 15. CSiV 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-35159-4_7

Download citation

Publish with us

Policies and ethics