Skip to main content

Chemical Communication and Semiochemical Recognition in Frogs: From Eggs to Adults

  • Conference paper
  • First Online:
Chemical Signals in Vertebrates 15 (CSiV 2021)

Included in the following conference series:

Abstract

Semiochemicals, such as sex pheromones or predator kairomones, trigger inter- and intraspecific interactions among animals. With more thanĀ 7500 species, frogs (Anura) are a highly diverse group with complex life cycles and adaptations to aquatic and terrestrial habitats. In this review we give a comprehensive and numerical overview about the research conducted concerning semiochemical use in different anuran live stages. Analysing more thanĀ 300 studies, we found that chemical communication and kairomone recognition are best studied in tadpoles. Tadpoles of different species are well known to react for example to damage-released alarm substances or predator kairomones. This knowledge has been used in some species to elope more complex research questions about learning mechanisms or the impact of chemical pollution. But also juvenile frogs and adults have been in the focus of semiochemical research, e.g., analysing the recognition of predator kairomones, conspecific semiochemicals, substances involved in parental care, or potential courtship pheromones. However, compared to tadpoles the research efforts in these life stages are still scarce. Furthermore, the species studied regarding semiochemical use do not remotely reflect the diversity of anuran species known today. Future studies of anuran chemical communication should provide additional insight to the role of semiochemicals across different life stages and species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achtymichuk, G. H., Crane, A. L., Simko, O. M., Stevens, H. E. F., & Ferrari, M. C. O. (2022). The choice of euthanasia techniques can affect experimental results in aquatic behavioural studies. Animal Behaviour, 185, 1ā€“8.

    Google ScholarĀ 

  • Adams, M. J., & Claeson, S. (1998). Field response of tadpoles to conspecific and heterospecific alarm. Ethology, 104(11), 955ā€“961.

    Google ScholarĀ 

  • Agosta, W. C. (1992). Chemical communication: the language of pheromones. Henry Holt and Company.

    Google ScholarĀ 

  • Ali, M. F., & Morgan, E. D. (1990). Chemical communication in insect communities: A guide to insect pheromones with special emphasis on social insects. Biological Reviews, 65(3), 227ā€“247.

    Google ScholarĀ 

  • Altig, R., & Christensen, M. T. (1981). Behavioral characteristics of the tadpoles of Rana heckscheri. Journal of Herpetology, 15(2), 151ā€“154.

    Google ScholarĀ 

  • Anderson, R. B., & Lawler, S. P. (2016). Behavioral changes in tadpoles after multigenerational exposure to an invasive intraguild predator. Behavioral Ecology, 27(6), 1790ā€“1796.

    Google ScholarĀ 

  • Asey, M. J., Harowicz, P. G., & Su, L. (2005). Chemically mediated mate recognition in the Tailed Frog (Ascaphus truei). In R. T. Mason, M. P. LeMaster, & D. MĆ¼ller-Schwarze (Eds.), Chemical signals in vertebrates 10 (pp. 24ā€“31). Springer.

    Google ScholarĀ 

  • Austin, C. E., March, R. E., Stock, N. L., & Murray, D. L. (2018). The origin and ecological function of an ion inducing anti-predator behavior in Lithobates tadpoles. Journal of Chemical Ecology, 44(2), 178ā€“188.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bairos-Novak, K. R., Crane, A. L., Achtymichuk, G. H., Hsin, J., Rivera-HernĆ”ndez, I. A. E., Simko, O. M., Wrynn, T. E., Chivers, D. P., & Ferrari, M. C. O. (2020). Forget the audience: tadpoles release similar disturbance cues regardless of kinship or familiarity. Behavioral Ecology and Sociobiology, 74(12), 1ā€“10.

    Google ScholarĀ 

  • Balestrieri, A., Gazzola, A., Pellitteri-Rosa, D., & Vallortigara, G. (2019). Discrimination of group numerousness under predation risk in anuran tadpoles. Animal Cognition, 22(2), 223ā€“230.

    PubMedĀ  Google ScholarĀ 

  • Barbasch, T., & Benard, M. F. (2011). Past and present risk: Exposure to predator chemical cues before and after metamorphosis influences juvenile wood frog behavior. Ethology, 117(5), 367ā€“373.

    Google ScholarĀ 

  • Batabyal, A., Gosavi, S. M., & Gramapurohit, N. P. (2014). Determining sensitive stages for learning to detect predators in larval bronzed frogs: Importance of alarm cues in learning. Journal of Biosciences, 39(4), 701ā€“710.

    PubMedĀ  Google ScholarĀ 

  • Belanger, R. M., & Corkum, L. D. (2009). Review of aquatic sex pheromones and chemical communication in anurans. Journal of Herpetology, 43(2), 184ā€“191.

    Google ScholarĀ 

  • Belden, L. K., Wildy, E. L., Hatch, A. C., & Blaustein, A. R. (2000). Juvenile western toads, Bufo boreas, avoid chemical cues of snakes fed juvenile, but not larval, conspecifics. Animal Behaviour, 59, 871ā€“875.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Benard, M. F., & Fordyce, J. A. (2003). Are induced defenses costly? Consequences of predator-induced defenses in western toads, Bufo boreas. Ecology, 84(1), 68ā€“78.

    Google ScholarĀ 

  • Bennett, A. M., Pereira, D., & Murray, D. L. (2013). Investment into defensive traits by anuran prey (Lithobates pipiens) is mediated by the starvation-predation risk trade-off. PLoS One, 8(12), e82344.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Berec, M., Klapka, V., & Zemek, R. (2016). Effect of an alien turtle predator on movement activity of European brown frog tadpoles. The Italian Journal of Zoology, 83(1), 68ā€“76.

    Google ScholarĀ 

  • Blaustein, A. R., & Oā€™Hara, R. K. (1982). Kin recognition in Rana cascadae tadpoles: Maternal and paternal effects. Animal Behaviour, 30(4), 1151ā€“1157.

    Google ScholarĀ 

  • Blaustein, A. R., Yoshikawa, T., Asoh, K., & Walls, S. C. (1993). Ontogenetic shifts in tadpole kin recognition: Loss of signal and perception. Animal Behaviour, 46, 525ā€“538.

    Google ScholarĀ 

  • Bossuyt, F., Maex, M., Treer, D., Schulte, L. M., Van Bocxlaer, I., & Janssenswillen, S. (2019a). Chemistry between salamanders: Evolution of the SPF courtship pheromone system in Salamandridae. In C. D. Buesching (Ed.), Chemical signals in vertebrates 14 (pp. 205ā€“220). Springer.

    Google ScholarĀ 

  • Bossuyt, F., Schulte, L. M., Maex, M., Janssenswillen, S., Novikova, P. Y., Biju, S. D., Van de Peer, Y., Matthijs, S., Roelants, K., Martel, A., & Van Bocxlaer, I. (2019b). Multiple independent recruitment of sodefrin precursor-like factors in anuran sexually dimorphic glands. Molecular Biology and Evolution, 36(9), 1921ā€“1930.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brizzi, R., Delfino, G., & Jantra, S. (2003). An overview of breeding glands. In B. G. M. Jamieson (Ed.), Reproductive biology and phylogeny of Anura (pp. 253ā€“317). Science Publishers, Inc.

    Google ScholarĀ 

  • Buttermore, K. F., Litkenhaus, P. N., Torpey, D. C., Smith, G. R., & Rettig, J. E. (2011). Effects of mosquitofish (Gambusia affinis) cues on wood frog (Lithobates sylvaticus) tadpole activity. Acta Herpetologica, 6(1), 81ā€“85.

    Google ScholarĀ 

  • Buxton, V. L., & Sperry, J. H. (2017). Reproductive decisions in anurans: A review of how predation and competition affects the deposition of eggs and tadpoles. BioScience, 67(1), 26ā€“38.

    Google ScholarĀ 

  • Byrne, P. G., & Keogh, J. S. (2007). Terrestrial toadlets use chemosignals to recognize conspecifics, locate mates and strategically adjust calling behaviour. Animal Behaviour, 74(5), 1155ā€“1162.

    Google ScholarĀ 

  • CapellĆ”n, E., & Nicieza, A. G. (2010). Constrained plasticity in switching across life stages: Pre- and post-switch predators elicit early hatching. Evolutionary Ecology, 24(1), 49ā€“57.

    Google ScholarĀ 

  • Carlson, B. E., Newman, J. C., & Langkilde, T. (2015). Food or fear: Hunger modifies responses to injured conspecifics in tadpoles. Hydrobiologia, 743(1), 299ā€“308.

    Google ScholarĀ 

  • Casillas-BarragĆ”n, I., Costa-Pereira, R., & Peixoto, P. E. C. (2016). Perceived predation risk decreases movement and increases aggregation of Amazon milk frog (Anura, Hylidae) tadpoles throughout ontogeny. Hydrobiologia, 765(1), 379ā€“386.

    Google ScholarĀ 

  • Chivers, D. P., & Mirza, R. S. (2001). Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. Journal of Chemical Ecology, 27(1), 45ā€“51.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chivers, D. P., & Smith, R. J. F. (1998). Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience, 5(3), 338ā€“352.

    Google ScholarĀ 

  • Chivers, D. P., Kiesecker, J. M., Marco, A., Wildy, E. L., & Blaustein, A. R. (1999a). Shifts in life history as a response to predation in western toads (Bufo boreas). Journal of Chemical Ecology, 25(11), 2455ā€“2463.

    CASĀ  Google ScholarĀ 

  • Chivers, D. P., Kiesecker, J. M., Wildy, E. L., Belden, L. K., Kats, L. B., & Blaustein, A. R. (1999b). Avoidance response of post-metamorphic anurans to cues of injured conspecifics and predators. Journal of Herpetology, 33(3), 472ā€“476.

    Google ScholarĀ 

  • Chivers, D. P., Wildy, E. L., Kiesecker, J. M., & Blaustein, A. R. (2001). Avoidance response of juvenile pacific treefrogs to chemical cues of introduced predatory bullfrogs. Journal of Chemical Ecology, 27(8), 1667ā€“1676.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chivers, D. P., Kiesecker, J. M., Marco, A., DeVito, J., Anderson, M. T., & Blaustein, A. R. (2003). Predator-induced life history changes in amphibians: Egg predation induces hatching. Oikos, 92(1), 135ā€“142.

    Google ScholarĀ 

  • Chivers, D. P., Mathiron, A., Sloychuk, J. R., & Ferrari, M. C. O. (2015). Responses of tadpoles to hybrid predator odours: Strong maternal signatures and the potential risk/response mismatch. Proceedings of the Royal Society B: Biological Sciences, 282, 20150365.

    PubMed CentralĀ  Google ScholarĀ 

  • Chuirazzi, C., Ocampo, M., & Takahashi, M. K. (2021). Influence of prey diet quality on predator-induced traits in wood frog tadpoles (Lithobates sylvaticus). Amphibia-Reptilia, 42(3), 331ā€“341.

    Google ScholarĀ 

  • Clarke, G. S., Crossland, M. R., Shilton, C., & Shine, R. (2015). Chemical suppression of embryonic cane toads Rhinella marina by larval conspecifics. Journal of Applied Ecology, 52(6), 1547ā€“1557.

    Google ScholarĀ 

  • Clarke, G. S., Crossland, M. R., & Shine, R. (2016). Can we control the invasive cane toad using chemicals that have evolved under intraspecific competition? Ecological Applications, 26(2), 463ā€“474.

    PubMedĀ  Google ScholarĀ 

  • Costa, R. N., & Nomura, F. (2014). Assessment risk and limited behavioral plasticity in tadpoles of Rhinella ornata (Anura, Bufonidae). Iheringia, 104(2), 162ā€“167.

    Google ScholarĀ 

  • Crane, A. L., & Ferrari, M. C. O. (2017). Evidence for risk extrapolation in decision making by tadpoles. Scientific Reports, 7(1), 1ā€“7.

    Google ScholarĀ 

  • Crane, A. L., Chivers, D. P., & Ferrari, M. C. O. (2019). Time-dependent latent inhibition of predator-recognition learning. Biology Letters, 15(5), 20190183.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Crossland, M. R., & Shine, R. (2011). Cues for cannibalism: Cane toad tadpoles use chemical signals to locate and consume conspecific eggs. Oikos, 120(3), 327ā€“332.

    Google ScholarĀ 

  • Crossland, M. R., & Shine, R. (2012). Embryonic exposure to conspecific chemicals suppresses cane toad growth and survival. Biology Letters, 8(2), 226ā€“229.

    PubMedĀ  Google ScholarĀ 

  • Crossland, M. R., Haramura, T., Salim, A. A., Capon, R. J., & Shine, R. (2012). Exploiting intraspecific competitive mechanisms to control invasive cane toads (Rhinella marina). Proceedings of the Royal Society B: Biological Sciences, 279, rspb20120821.

    Google ScholarĀ 

  • Crossland, M. R., Salim, A. A., Capon, R. J., & Shine, R. (2019). The effects of conspecific alarm cues on larval cane toads (Rhinella marina). Journal of Chemical Ecology, 45(10), 838ā€“848.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Crossland, M. R., Salim, A. A., Capon, R. J., & Shine, R. (2021). Chemical cues that attract cannibalistic cane toad (Rhinella marina) larvae to vulnerable embryos. Scientific Reports, 11(1), 1ā€“8.

    Google ScholarĀ 

  • Crump, M. L. (1996). Parental care among the amphibia. In J. S. Rosenblatt & C. T. Snowdon (Eds.), Parental care. Evolution, mechanisms, and adaptive significance. Advances in the study of behavior (Vol. 25p, pp. 109ā€“144). Academic Press.

    Google ScholarĀ 

  • Curi, L. M., Cuzziol Boccioni, A. P., Peltzer, P. M., Attademo, A. M., BassĆ³, A., LeĆ³n, E. J., & Lajmanovich, R. C. (2022). Signals from predators, injured conspecifics, and pesticide modify the swimming behavior of the gregarious tadpole of the Dorbignyā€™s Toad, Rhinella dorbignyi (Anura: Bufonidae). Canadian Journal of Zoology, 100(999), 19ā€“27.

    Google ScholarĀ 

  • Delaney, K., & Bishop, P. J. (2007). Communication in the worldā€™s most ancestral frogs. New Zealand Journal of Zoology, 34(3), 262.

    Google ScholarĀ 

  • Deng, K., He, Q.-L., Zhou, Y., Zhu, B.-C., Wang, T.-L., Wang, J.-C., & Cui, J.-G. (2020). Male serrate-legged treefrogs adjust competition strategies according to visual or chemical cues from females. The Journal of Experimental Biology, 223(21), jeb229245.

    PubMedĀ  Google ScholarĀ 

  • Deng, K., Zhou, Y., He, Q.-L., Zhu, B.-C., Wang, T.-L., Wang, J.-C., & Cui, J.-G. (2021). Conspecific odor cues induce different vocal responses in serrate-legged small treefrogs, but only in the absence of acoustic signals. Frontiers in Zoology, 18(1), 1ā€“6.

    Google ScholarĀ 

  • Deng, K., Zhou, Y., Zhang, H.-D., He, Q.-L., Zhu, B.-C., Wang, T.-L., Wang, J.-C., Halfwerk, W., & Cui, J.-G. (2022). Conspecific disturbance odors act as alarm cues to affect female mate choice in a treefrog. Behavioral Ecology and Sociobiology, 76(4), 1ā€“8.

    Google ScholarĀ 

  • Dibble, C. J., Kauffman, J. E., Zuzik, E. M., Smith, G. R., & Rettig, J. E. (2009). Effects of potential predator and competitor cues and sibship on wood frog (Rana sylvatica) embryos. Amphibia-Reptilia, 30(2), 294ā€“298.

    Google ScholarĀ 

  • Dicke, M., & Sabelis, M. W. (1988). Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Functional Ecology, 2, 131ā€“139.

    Google ScholarĀ 

  • Dijk, B., Laurila, A., Orizaola, G., & Johansson, F. (2016). Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behavioral Ecology and Sociobiology, 70(2), 237ā€“246.

    Google ScholarĀ 

  • Dodson, S. I., Crowl, T. A., Peckarsky, B. L., Kats, L. B., Covich, A. P., & Culp, J. M. (1994). Non-visual communication in freshwater benthos: An overview. Journal of the North American Benthological Society, 13(2), 268ā€“282.

    Google ScholarĀ 

  • Dole, J. W., Rose, B. B., & Tachiki, K. H. (1981). Western toads (Bufo boreas) learn odor of prey insects. Herpetologica, 37(1), 63ā€“68.

    Google ScholarĀ 

  • Ehrsam, M., Knutie, S. A., & Rohr, J. R. (2016). The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues. Environmental Toxicology and Chemistry, 35, 2239ā€“2244.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Eibl-Eibesfeldt, I. (1949). Ɯber das Vorkommen von Schreckstoffen bei Erdkrƶtenquappen. Experientia, 5, 236.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Eklƶv, P. (2000). Chemical cues from multiple predator-prey interactions induce changes in behavior and growth of anuran larvae. Oecologia, 123(2), 192ā€“199.

    PubMedĀ  Google ScholarĀ 

  • El Balaa, R., & Blouin-Demers, G. (2013). Does exposure to cues of fish predators fed different diets affect morphology and performance of Northern Leopard Frog (Lithobates pipiens) larvae? Canadian Journal of Zoology, 91(4), 203ā€“211.

    Google ScholarĀ 

  • Eluvathingal, L. M., Shanbhag, B. A., & Saidapur, S. K. (2009). Association preference and mechanism of kin recognition in tadpoles of the toad Bufo melanostictus. Journal of Biosciences, 34(3), 435ā€“444.

    PubMedĀ  Google ScholarĀ 

  • Escalona SulbarĆ”n, M. D., Ivo SimƵes, P., Gonzalez-Voyer, A., & Castroviejo-Fisher, S. (2019). Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs. Journal of Evolutionary Biology, 32(2), 163ā€“176.

    PubMedĀ  Google ScholarĀ 

  • Feminella, J. W., & Hawkins, C. P. (1994). Tailed frog tadpoles differentially alter their feeding behavior in response to von-visual cues from four predators. Journal of the North American Benthological Society, 13(2), 310ā€“320.

    Google ScholarĀ 

  • Ferland-Raymond, B., March, R. E., Metcalfe, C. D., & Murray, D. L. (2010). Prey detection of aquatic predators: Assessing the identity of chemical cues eliciting prey behavioral plasticity. Biochemical Systematics and Ecology, 38(2), 169ā€“177.

    CASĀ  Google ScholarĀ 

  • Ferrari, M. C. O., & Chivers, D. P. (2008). Cultural learning of predator recognition in mixed-species assemblages of frogs: The effect of tutor-to-observer ratio. Animal Behaviour, 75(6), 1921ā€“1925.

    Google ScholarĀ 

  • Ferrari, M. C. O., & Chivers, D. P. (2009a). Latent inhibition of predator recognition by embryonic amphibians. Biology Letters, 5(2), 160ā€“162.

    PubMedĀ  Google ScholarĀ 

  • Ferrari, M. C. O., & Chivers, D. P. (2009b). Sophisticated early life lessons: Threat-sensitive generalization of predator recognition by embryonic amphibians. Behavioral Ecology, 20(6), 1295ā€“1298.

    Google ScholarĀ 

  • Ferrari, M. C. O., & Chivers, D. P. (2009c). Temporal variability, threat sensitivity and conflicting information about the nature of risk: Understanding the dynamics of tadpole antipredator behaviour. Animal Behaviour, 78(1), 11ā€“16.

    Google ScholarĀ 

  • Ferrari, M. C. O., Messier, F., & Chivers, D. P. (2007). First documentation of cultural transmission of predator recognition by larval amphibians. Ethology, 113(6), 621ā€“627.

    Google ScholarĀ 

  • Ferrari, M. C. O., Messier, F., & Chivers, D. P. (2008a). Degradation of chemical alarm cues under natural conditions: Risk assessment by larval woodfrogs. Chemoecology, 17(4), 263ā€“266.

    Google ScholarĀ 

  • Ferrari, M. C. O., Messier, F., & Chivers, D. P. (2008b). Larval amphibians learn to match antipredator response intensity to temporal patterns of risk. Behavioral Ecology, 19(5), 980ā€“983.

    Google ScholarĀ 

  • Ferrari, M. C. O., Brown, G. E., Messier, F., & Chivers, D. P. (2009). Threat-sensitive generalization of predator recognition by larval amphibians. Behavioral Ecology and Sociobiology, 63(9), 1369ā€“1375.

    Google ScholarĀ 

  • Ferrari, M. C. O., Wisenden, B. D., & Chivers, D. P. (2010). Chemical ecology of predatorā€“prey interactions in aquatic ecosystems: A review and prospectus. Canadian Journal of Zoology, 88(7), 698ā€“724.

    Google ScholarĀ 

  • Ferrari, M. C. O., Brown, G. E., & Chivers, D. P. (2012). Temperature-mediated changes in rates of predator forgetting in woodfrog tadpoles. PLoS One, 7(12), e51143.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ferrari, M. C. O., Crane, A. L., & Chivers, D. P. (2016). Certainty and the cognitive ecology of generalization of predator recognition. Animal Behaviour, 111, 207ā€“211.

    Google ScholarĀ 

  • Ferrari, M. C. O., Brown, G. E., & Chivers, D. P. (2018). Understanding the effect of uncertainty on the development of neophobic antipredator phenotypes. Animal Behaviour, 136, 101ā€“106.

    Google ScholarĀ 

  • Ferreira do Amaral, D., MontalvĆ£o, M. F., de Oliveira Mendes, B., de Souza, J. M., Chagas, T. Q., de Lima Rodrigues, A. S., & Malafaia, G. (2018). Insights about the toxic effects of tannery effluent on Lithobates catesbeianus tadpoles. Science of the Total Environment, 621, 791ā€“801.

    CASĀ  Google ScholarĀ 

  • Flowers, M. A., & Graves, B. M. (1997). Juvenile toads avoid chemical cues from snake predators. Animal Behaviour, 53(3), 641ā€“646.

    Google ScholarĀ 

  • Forester, D. C., & Thompson, K. J. (1998). Gauntlet behaviour as a male sexual tactic in the American toad (Amphibia: Bufonidae). Behaviour, 135(2), 99ā€“119.

    Google ScholarĀ 

  • Fraker, M. E. (2009). Predation risk assessment by green frog (Rana clamitans) tadpoles through chemical cues produced by multiple prey. Behavioral Ecology and Sociobiology, 63(10), 1397ā€“1402.

    Google ScholarĀ 

  • Fraker, M. E., Hu, F., Cuddapah, V., McCollum, S. A., Relyea, R. A., Hempel, J., & Denver, R. J. (2009). Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Hormones and Behavior, 55(4), 520ā€“529.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Frost, D. R. (2022). Amphibian species of the world: An online reference. Version 6.1. (2 Nov 2022). American Museum of Natural History, New York. https://amphibiansoftheworld.amnh.org/index.php

  • Garcia, T. S., Urbina, J. C., Bredeweg, E. M., & Ferrari, M. C. O. (2017). Embryonic learning and developmental carry-over effects in an invasive anuran. Oecologia, 184(3), 623ā€“631.

    PubMedĀ  Google ScholarĀ 

  • Garcia, T. S., Bredeweg, E. M., Urbina, J., & Ferrari, M. C. O. (2019). Evaluating adaptive, carry-over, and plastic antipredator responses across a temporal gradient in Pacific chorus frogs. Ecology, 100(11), e02825.

    PubMedĀ  Google ScholarĀ 

  • Gascuel, J., & Amano, T. (2013). Exotic models may offer unique opportunities to decipher specific scientific questions: The case of Xenopus olfactory system. The Anatomical Record, 296(9), 1453ā€“1461.

    PubMedĀ  Google ScholarĀ 

  • Gazzola, A., Brandalise, F., Rubolini, D., Rossi, P., & Galeotti, P. (2015). Fear is the mother of invention: Anuran embryos exposed to predator cues alter life-history traits, post-hatching behaviour and neuronal activity patterns. The Journal of Experimental Biology, 218(24), 3919ā€“3930.

    PubMedĀ  Google ScholarĀ 

  • Gazzola, A., Balestrieri, A., Scribano, G., Fontana, A., & Pellitteri-Rosa, D. (2021). Contextual behavioural plasticity in Italian agile frog (Rana latastei) tadpoles exposed to native and alien predator cues. The Journal of Experimental Biology, 224(9), jeb240465.

    Google ScholarĀ 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans. University of Chicago Press.

    Google ScholarĀ 

  • Giri, A., Yadav, S. S., Giri, S., & Sharma, G. D. (2012). Effect of predator stress and malathion on tadpoles of Indian skittering frog. Aquatic Toxicology, 106ā€“107, 157ā€“163.

    PubMedĀ  Google ScholarĀ 

  • Gomez-Mestre, I., & DĆ­az-Paniagua, C. (2011). Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proceedings of the Royal Society B: Biological Sciences, 278(1723), 3364ā€“3370.

    PubMed CentralĀ  Google ScholarĀ 

  • Gong, Y., Zeng, Y., Zheng, P., Liao, X., & Xie, F. (2020). Structural and bio-functional assessment of the postaxillary gland in Nidirana pleuraden (Amphibia: Anura: Ranidae). Zoological Letters, 6(1), 1ā€“16.

    Google ScholarĀ 

  • Gonzalo, A., Cabido, C., Galan, P., Lopez, P., & Martin, J. (2006). Predator, but not conspecific, chemical cues influence pond selection by recently metamorphosed Iberian green frogs, Rana perezi. Canadian Journal of Zoology, 84(9), 1295ā€“1299.

    Google ScholarĀ 

  • Gonzalo, A., Lopez, P., & Martin, J. (2010). Risk level of chemical cues determines retention of recognition of new predators in Iberian green frog tadpoles. Behavioral Ecology and Sociobiology, 64(7), 1117ā€“1123.

    Google ScholarĀ 

  • Gonzalo, A., LĆ³pez, P., & MartĆ­n, J. (2013). Adaptive forgetting in Iberian green frog tadpoles (Pelophylax perezi): Learned irrelevance and latent inhibition may avoid predator misidentification. Journal of Comparative Psychology, 127(1), 56.

    PubMedĀ  Google ScholarĀ 

  • Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3), 183ā€“190.

    Google ScholarĀ 

  • Graham, B. M., Oā€™Hearn, D. J., MacAllister, I. E., & Sperry, J. H. (2020). Behavioral responses by adult Northern leopard frogs to conspecific chemical cues. Journal of Herpetology, 54(2), 168ā€“173.

    Google ScholarĀ 

  • Graves, B. M., Summers, C. H., & Olmstead, K. L. (1993). Sensory mediation of aggregation among postmetamorphic Bufo cognatus. Journal of Herpetology, 27(3), 315ā€“319.

    Google ScholarĀ 

  • Grubb, J. C. (1973). Olfactory orientation in Bufo woodhousei fowleri, Pseudacris clarki and Pseudacris streckeri. Animal Behaviour, 21(4), 726ā€“732.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hagman, M., & Shine, R. (2008a). Australian tadpoles do not avoid chemical cues from invasive cane toads (Bufo marinus). Wildlife Research, 35(1), 59ā€“64.

    Google ScholarĀ 

  • Hagman, M., & Shine, R. (2008b). Tadpoles of invasive cane toads (Bufo marinus) do not respond behaviourally to chemical cues from tadpoles of four species of Australian frogs. Australian Journal of Zoology, 56(4), 211ā€“213.

    CASĀ  Google ScholarĀ 

  • Hagman, M., & Shine, R. (2008c). Understanding the toad code: Behavioural responses of cane toad (Chaunus marinus) larvae and metamorphs to chemical cues. Austral Ecology, 33(1), 37ā€“44.

    Google ScholarĀ 

  • Hagman, M., & Shine, R. (2009a). Factors influencing responses to alarm pheromone by larvae of invasive cane toads, Bufo marinus. Journal of Chemical Ecology, 35(2), 265ā€“271.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hagman, M., & Shine, R. (2009b). Larval alarm pheromones as a potential control for invasive cane toads (Bufo marinus) in tropical Australia. Chemoecology, 19(4), 211ā€“217.

    CASĀ  Google ScholarĀ 

  • Hagman, M., Hayes, R. A., Capon, R. J., & Shine, R. (2009). Alarm cues experienced by cane toad tadpoles affect post-metamorphic morphology and chemical defences. Functional Ecology, 23(1), 126ā€“132.

    Google ScholarĀ 

  • Hamer, R., Lemckert, F. L., & Banks, P. B. (2011). Adult frogs are sensitive to the predation risks of olfactory communication. Biology Letters, 7(3), 361ā€“363.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Haramura, T., Crossland, M. R., Takeuchi, H., & Shine, R. (2017). Methods for invasive species control are transferable across invaded areas. PLoS One, 12(11), e0187265.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hazlett, B. A. (1985). Disturbance pheromones in the crayfish Orconectes virilis. Journal of Chemical Ecology, 11(12), 1695ā€“1711.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hemnani, M., GuimarĆ£es, I. S. C., Kaefer, I. L., & da Pires, T. H. S. (2022). Alarm reaction depends on multiple chemical cues in tadpoles of the cane toad (Rhinella marina). Ethology Ecology and Evolution, 35, 1ā€“13.

    Google ScholarĀ 

  • Hepper, P. G., & Waldman, B. (1992). Embryonic olfactory learning in frogs. Quarterly Journal of Experimental Psychology: Section B, 44(3ā€“4), 179ā€“197.

    CASĀ  Google ScholarĀ 

  • Hettyey, A., TĆ³th, Z., Thonhauser, K. E., Frommen, J. G., Penn, D. J., & Van Buskirk, J. (2015). The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia, 179(3), 699ā€“710.

    PubMedĀ  Google ScholarĀ 

  • Hettyey, A., Ɯveges, B., MĆ³ricz, Ɓ. M., Drahos, L., Capon, R. J., Van Buskirk, J., TĆ³th, Z., & BĆ³kony, V. (2019). Predator-induced changes in the chemical defence of a vertebrate. The Journal of Animal Ecology, 88(12), 1925ā€“1935.

    PubMedĀ  Google ScholarĀ 

  • Hews, D. K., & Blaustein, A. R. (1985). An investigation of the alarm response in Bufo boreas and Rana cascadae tadpoles. Behavioral and Neural Biology, 43(1), 47ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hickman, C. R., & Watling, J. I. (2014). Leachates from an invasive shrub causes risk-prone behavior in a larval amphibian. Behavioral Ecology, 25(2), 300ā€“305.

    Google ScholarĀ 

  • Holomuzki, J. R. (1995). Oviposition sites and fish-deterrent mechanisms of two stream anurans. Copeia, 1995(3), 607ā€“613.

    Google ScholarĀ 

  • Hossie, T., Landolt, K., & Murray, D. L. (2017). Determinants and co-expression of anti-predator responses in amphibian tadpoles: A meta-analysis. Oikos, 126(2), 173ā€“184.

    Google ScholarĀ 

  • Hƶtling, S., Haberlag, B., Tamm, M., Collatz, J., Mack, P., Steidle, J. L. M., Vences, M., & Schulz, S. (2014). Identification and synthesis of macrolide pheromones of the grain beetle Oryzaephilus surinamensis and the frog Spinomantis aglavei. Chemistry - A European Journal, 20(11), 3183ā€“3191.

    PubMedĀ  Google ScholarĀ 

  • Houck, L. D. (2009). Pheromone communication in amphibians and reptiles. Annual Review of Physiology, 71, 161ā€“176.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • HrbĆ”Äek, J. (1950). On the flight reaction of tadpoles of the common toad caused by chemical substances. Cellular and Molecular Life Sciences, 6(3), 100ā€“102.

    Google ScholarĀ 

  • Iglesias-Carrasco, M., Cabido, C., & Ord, T. J. (2022). Natural toxins leached from Eucalyptus globulus plantations affect the development and life-history of anuran tadpoles. Freshwater Biology, 67(2), 378ā€“388.

    CASĀ  Google ScholarĀ 

  • Jefferson, D. M., Hobson, K. A., & Chivers, D. P. (2013). Understanding the information value of repeated exposure to chemical alarm cues: What can growth patterns tell us? Annales Zoologici Fennici, 50, 237ā€“246.

    Google ScholarĀ 

  • Kam, Y.-C., & Yang, H.-W. (2002). Female-offspring communication in a Taiwanese tree frog, Chirixalus eiffingeri (Anura: Rhacophoridae). Animal Behaviour, 64(6), 881ā€“886.

    Google ScholarĀ 

  • Karlson, P., & LĆ¼scher, M. (1959). ā€˜Pheromonesā€™: A new term for a class of biologically active substances. Nature, 183(4653), 55ā€“56.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kats, L. B., & Dill, L. M. (1998). The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience, 5(3), 361ā€“394.

    Google ScholarĀ 

  • Kats, L. B., Petranka, J. W., & Sih, A. (1988). Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology, 69(6), 1865ā€“1870.

    Google ScholarĀ 

  • Kiesecker, J. M., & Blaustein, A. R. (1997). Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology, 78(6), 1752ā€“1760.

    Google ScholarĀ 

  • Kiesecker, J. M., Chivers, D. P., & Blaustein, A. R. (1996). The use of chemical cues in predator recognition by western toad tadpoles. Animal Behaviour, 52(6), 1237ā€“1245.

    Google ScholarĀ 

  • Kiesecker, J. M., Chivers, D. P., Marco, A., Quilchano, C., Anderson, M. T., & Blaustein, A. R. (1999a). Identification of a disturbance signal in larval red-legged frogs, Rana aurora. Animal Behaviour, 57(6), 1295ā€“1300.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kiesecker, J. M., Skelly, D. K., Beard, K. H., & Preisser, E. (1999b). Behavioral reduction of infection risk. Proceedings of the National Academy of Sciences, 96(16), 9165ā€“9168.

    CASĀ  Google ScholarĀ 

  • Kiesecker, J. M., Chivers, D. P., Anderson, M., & Blaustein, A. R. (2002). Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. Journal of Chemical Ecology, 28(5), 1007ā€“1015.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kikuyama, S., Yamamoto, K., Iwata, T., & Toyoda, F. (2002). Peptide and protein pheromones in amphibians. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132(1), 69ā€“74.

    Google ScholarĀ 

  • King, J. D., Rollins-Smith, L. A., Nielsen, P. F., John, A., & Conlon, J. M. (2005). Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs. Peptides, 26(4), 597ā€“601.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kiseleva, E. I. (1989). Reactions of Bufo bufo L. toad tadpoles on chemical signals of individuals of the same and different species. Zhurnal Obshchei Biologii, 50(6), 794ā€“798.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kiseleva, E. I. (1996). The Chemical interaction of frog tadpoles (Rana temporaria L., Anura, Amphibia) with conspecific and heterospecific anuran tadpoles. Zhurnal Obshchei Biologii, 57(6), 740ā€“746.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kloskowski, J. (2020). Better desiccated than eaten by fish: distribution of anurans among habitats with different risks to offspring. Freshwater Biology, 65(12), 2124ā€“2134.

    Google ScholarĀ 

  • Korbeck, R. G., & McRobert, S. P. (2005). Home area recognition via olfactory cues in the tropical poison frog Dendrobates auratus. Russian Journal of Herpetology, 12(3), 161ā€“166.

    Google ScholarĀ 

  • Kramer, G. (1933). Untersuchungen Ć¼ber die Sinnesleistungen und das Orientierungsverhalten von Xenopus laevis Daud. Zoologische Jahrbucher Abteilung FĆ¼r Allgemeine Zoologie Und Physiologie Der Tiere, 52, 629ā€“676.

    Google ScholarĀ 

  • Kuhn, J., & Schulz, S. (2022). Cinnamomeoventrolideā€“double bond regioisomerism in frog semiochemicals. Journal of Chemical Ecology, 48(5), 531ā€“545.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kulzer, E. (1954). Untersuchungen Ć¼ber die Schreckreaktion der Erdkrƶtenkaulquappen (Bufo bufo). Zeitschrift FĆ¼r Vergleichene Physiologie, 36, 443ā€“463.

    Google ScholarĀ 

  • Kumpulainen, N. (2022). Communication between the tadpoles of the dyeing poison frog Dendrobates tinctorius (Anura, Dendrobatidae). Master Thesis, University of JyvƤskylƤ

    Google ScholarĀ 

  • Kurali, A., PĆ”sztor, K., Hettyey, A., & TĆ³th, Z. (2016). Toxin depletion has no effect on antipredator responses in common toad (Bufo bufo) tadpoles. Biological Journal of the Linnean Society, 119(4), 1000ā€“1010.

    Google ScholarĀ 

  • Laurila, A. (2000). Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles. Oikos, 88(1), 159ā€“168.

    CASĀ  Google ScholarĀ 

  • Law, J. H., & Regnier, F. E. (1971). Pheromones. Annual Review of Biochemistry, 40(1), 533ā€“548.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee, J. S. F., & Waldman, B. (2002). Communication by fecal chemosignals in an archaic frog, Leiopelma hamiltoni. Copeia, 2002(3), 679ā€“686.

    Google ScholarĀ 

  • Lefcort, H. (1996). Adaptive, chemically mediated fright response in tadpoles of the southern leopard frog, Rana utricularia. Copeia, 1996(2), 455ā€“459.

    Google ScholarĀ 

  • Lefcort, H., & Eiger, S. M. (1993). Antipredatory behaviour of feverish tadpoles: Implications for pathogen transmission. Behaviour, 126(1/2), 13ā€“27.

    Google ScholarĀ 

  • Lucon-Xiccato, T. (2019). Chemical alarm cues allow prey to adjust their defensive behaviour to cover abundance. Behavioural Processes, 162, 86ā€“89.

    PubMedĀ  Google ScholarĀ 

  • Lucon-Xiccato, T., Chivers, D. P., Mitchell, M. D., & Ferrari, M. C. O. (2016). Making the dead talk: alarm cue-mediated antipredator behaviour and learning are enhanced when injured conspecifics experience high predation risk. Biology Letters, 12(8), 20160560.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lucon-Xiccato, T., Chivers, D. P., Mitchell, M. D., & Ferrari, M. C. O. (2017). Prenatal exposure to predation affects predator recognition learning via lateralization plasticity. Behavioral Ecology, 28(1), 253ā€“259.

    Google ScholarĀ 

  • Maag, N., Gehrer, L., & Woodhams, D. C. (2012). Sink or swim: a test of tadpole behavioral responses to predator cues and potential alarm pheromones from skin secretions. Journal of Comparative Physiology A, 198(11), 841ā€“846.

    CASĀ  Google ScholarĀ 

  • Madison, D. M. (1977). Chemical communication in amphibians and reptiles. In D. MĆ¼ller-Schwarze & M. Mozell (Eds.), Chemical signals in vertebrates (pp. 135ā€“168). Plenum Press.

    Google ScholarĀ 

  • Mandrillon, A. L., & Saglio, P. (2005). Prior exposure to conspecific chemical cues affects predator recognition in larval common toad (Bufo bufo). Archiv fĆ¼r Hydrobiologie, 164(1), 1ā€“12.

    Google ScholarĀ 

  • Mandrillon, A. L., & Saglio, P. (2007a). Effects of embryonic exposure to conspecific chemical cues on hatching and larval traits in the common frog (Rana temporaria). Chemoecology, 17(3), 169ā€“175.

    Google ScholarĀ 

  • Mandrillon, A. L., & Saglio, P. (2007b). Herbicide exposure affects the chemical recognition of a non native predator in common toad tadpoles (Bufo bufo). Chemoecology, 17(1), 31ā€“36.

    CASĀ  Google ScholarĀ 

  • Mandrillon, A. L., & Saglio, P. (2009). Effects of single and combined embryonic exposures to herbicide and conspecific chemical alarm cues on hatching and larval traits in the common frog (Rana temporaria). Archives of Environmental Contamination and Toxicology, 56(3), 566ā€“576.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Manteifel, Y. (1995). Chemically-mediated avoidance of predators by Rana temporaria tadpoles. Journal of Herpetology, 29(3), 461ā€“463.

    Google ScholarĀ 

  • Manteifel, Y. B. (2001). Avoidance of alarm pheromone by tadpoles of the common toad, Bufo bufo, in nature. ZoologicheskiÄ­ Zhurnal, 80, 67ā€“70.

    Google ScholarĀ 

  • Manteifel, Y. B., & Kiseleva, E. I. (2011). Ammonia as a pheromone in anuran tadpoles. Physiological Research, 60(1), S185ā€“S191.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Manteifel, Y. B., & Zhushev, A. V. (1996). Avoidance of natural chemical stimuli by tadpoles of three anuran species. Russian Journal of Zoology, 75(6), 900ā€“906.

    Google ScholarĀ 

  • Manteifel, Y. B., Kiseleva, E. I., & Margolis, S. E. (2005). An increase in ammonium concentration as a non-specific pheromone signal that is avoided by amphibian larvae. Zoologičeskij Žurnal, 84(10), 1289ā€“1297.

    Google ScholarĀ 

  • Manteifel, Y. B., Margolis, S. E., & Kiseleva, E. I. (2006). Disturbance pheromone in the common toad (Bufo bufo) larvae: The possible communicative role of ammonium-containing excretions. Doklady Biological Sciences, 406(3), 82ā€“83.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Marino, J. A., Holland, M. P., & Middlemis Maher, J. (2014). Predators and trematode parasites jointly affect larval anuran functional traits and corticosterone levels. Oikos, 123(4), 451ā€“460.

    Google ScholarĀ 

  • Mathis, A., Ferrari, M. C. O., Windel, N., Messier, F., & Chivers, D. P. (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society B: Biological Sciences, 275(1651), 2603.

    PubMed CentralĀ  Google ScholarĀ 

  • Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., & Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). The Journal of General Physiology, 43(6), 129.

    PubMed CentralĀ  Google ScholarĀ 

  • McCann, S., Crossland, M., Greenlees, M., & Shine, R. (2019a). Invader control: Factors influencing the attraction of cane toad (Rhinella marina) larvae to adult parotoid exudate. Biological Invasions, 21(6), 1895ā€“1904.

    Google ScholarĀ 

  • McCann, S., Crossland, M. R., & Shine, R. (2019b). Pheromones can cull an invasive amphibian without releasing survivors from intraspecific competition. Ecosphere, 10(12), e02969.

    Google ScholarĀ 

  • McCoy, M. W., Wheat, S. K., Warkentin, K. M., & Vonesh, J. R. (2015). Risk assessment based on indirect predation cues: Revisiting fine-grained variation. Ecology and Evolution, 5(20), 4523ā€“4528.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • McIntyre, P. B., & McCollum, S. A. (2000). Responses of bullfrog tadpoles to hypoxia and predators. Oecologia, 125(2), 301ā€“308.

    PubMedĀ  Google ScholarĀ 

  • McMahon, T. A., Laggan, N. A., & Hill, M. N. (2019). Metabolites produced by Batrachochytrium dendrobatidis alter development in tadpoles, but not growth or mortality. Diseases of Aquatic Organisms, 135(3), 251ā€“255.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • McMahon, T. A., Hill, M. N., Lentz, G. C., Scott, E. F., Tenouri, N. F., & Rohr, J. R. (2021). Amphibian species vary in their learned avoidance response to the deadly fungal pathogen Batrachochytrium dendrobatidis. Journal of Applied Ecology, 58(8), 1613ā€“1620.

    Google ScholarĀ 

  • Melnik, K., Menke, M., Rakotoarison, A., Vences, M., & Schulz, S. (2019). Identification and synthesis of luteolide, a highly branched macrolide semiochemical from the mantellid frog Gephyromantis luteus. Organic Letters, 21(8), 2851ā€“2854.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Melo, G. R., SolĆ©, M., & Eterovick, P. C. (2021). Invisible or fearless: Tadpole response to predator cues depends on color. Ethology Ecology and Evolution, 33(2), 99ā€“107.

    Google ScholarĀ 

  • Menke, M., Peram, P. S., Starnberger, I., Hƶdl, W., Jongsma, G. F. M., Blackburn, D. C., Rƶdel, M.-O., Vences, M., & Schulz, S. (2016). Identification, synthesis and mass spectrometry of a macrolide from the African reed frog Hyperolius cinnamomeoventris. Beilstein Journal of Organic Chemistry, 12(1), 2731ā€“2738.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Menke, M., Melnik, K., Peram, P. S., Starnberger, I., Hƶdl, W., Vences, M., & Schulz, S. (2018). Frogolideā€“an unprecedented sesquiterpene macrolactone from scent glands of African frogs. European Journal of Organic Chemistry, 2018(20ā€“21), 2651ā€“2656.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • MikĆ³, Z., Ujszegi, J., GĆ”l, Z., Imrei, Z., & Hettyey, A. (2015). Choice of experimental venue matters in ecotoxicology studies: Comparison of a laboratory-based and an outdoor mesocosm experiment. Aquatic Toxicology, 167, 20ā€“30.

    PubMedĀ  Google ScholarĀ 

  • Mirza, R. S., & Chivers, D. P. (2001). Do chemical alarm signals enhance survival of aquatic vertebrates? An analysis of the current research paradigm. In A. Marchlewska-Koj, J. J. Lepri, & D. MĆ¼ller-Schwarze (Eds.), Chemical signals in vertebrates 9 (pp. 19ā€“26). Springer.

    Google ScholarĀ 

  • Mirza, R. S., & Kiesecker, J. M. (2005). Chemically mediated life-history shifts in embryonic amphibians. In Chemical signals in vertebrates 10 (pp. 373ā€“380). Springer.

    Google ScholarĀ 

  • Mirza, R. S., Ferrari, M. C. O., Kiesecker, J. M., & Chivers, D. P. (2006). Responses of American toad tadpoles to predation cues: Behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour, 143, 877ā€“889.

    Google ScholarĀ 

  • Mirza, R. S., Laraby, C. A., & Marcellus, A. M. (2013). Knowing your behaviour: the importance of behavioural assays in the characterisation of chemical alarm cues in fishes and amphibians. In M. L. East & M. Dehnhard (Eds.), Chemical signals in vertebrates 12 (pp. 295ā€“308). Springer.

    Google ScholarĀ 

  • Mitchell, M. D., Chivers, D. P., Brown, G. E., & Ferrari, M. C. O. (2016a). Living on the edge: How does environmental risk affect the behavioural and cognitive ecology of prey? Animal Behaviour, 115, 185ā€“192.

    Google ScholarĀ 

  • Mitchell, M. D., Ferrari, M. C. O., Lucon-Xiccato, T., & Chivers, D. P. (2016b). Diet cues alter the development of predator recognition templates in tadpoles. Behavioral Ecology and Sociobiology, 70(10), 1707ā€“1713.

    Google ScholarĀ 

  • Mitchell, M. D., Bairos-Novak, K. R., & Ferrari, M. C. O. (2017). Mechanisms underlying the control of responses to predator odours in aquatic prey. The Journal of Experimental Biology, 220(11), 1937ā€“1946.

    PubMedĀ  Google ScholarĀ 

  • Mitchell, M. D., Crane, A. L., Bairos-Novak, K. R., Ferrari, M. C. O., & Chivers, D. P. (2018). Olfactory cues of habitats facilitate learning about landscapes of fear. Behavioral Ecology, 29(3), 693ā€“700.

    Google ScholarĀ 

  • Mogali, S. M., Saidapur, S. K., & Shanbhag, B. A. (2011). Levels of predation modulate antipredator defense behavior and metamorphic traits in the toad Bufo melanostictus. Journal of Herpetology, 45(4), 428ā€“431.

    Google ScholarĀ 

  • Mogali, S. M., Shanbhag, B. A., & Saidapur, S. K. (2015). Strong food odours mask predation risk and affect evocation of defence behaviours in the tadpoles of Sphaerotheca breviceps. Journal of Ethology, 33(1), 41ā€“46.

    Google ScholarĀ 

  • Mogali, S. M., Saidapur, S. K., & Shanbhag, B. A. (2020). Behavioral responses of tadpoles of Duttaphrynus melanostictus (Anura: Bufonidae) to cues of starved and fed dragonfly larvae. Phyllomedusa: Journal of Herpetology, 19(1), 93ā€“98.

    Google ScholarĀ 

  • Moore, H., Chivers, D. P., & Ferrari, M. C. O. (2015). Sub-lethal effects of Roundup on tadpole anti-predator responses. Ecotoxicology and Environmental Safety, 111, 281ā€“285.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Murray, D. L., Roth, J. D., & Wirsing, A. J. (2004). Predation risk avoidance by terrestrial amphibians: The role of prey experience and vulnerability to native and exotic predators. Ethology, 110(8), 635ā€“647.

    Google ScholarĀ 

  • Natale, G. S., Alcalde, L., Herrera, R., Cajade, R., Schaefer, E. F., Marangoni, F., & Trudeau, V. L. (2011). Underwater acoustic communication in the macrophagic carnivorous larvae of Ceratophrys ornata (Anura: Ceratophryidae). Acta Zoologica, 92(1), 46ā€“53.

    Google ScholarĀ 

  • Nieuwkoop, P. D., Faber, J., Gerhart, J., & Kirschner, M. (2020). Normal table of Xenopus laevis (Daudin): A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Science.

    Google ScholarĀ 

  • Nordlund, D. A. (1981). Semiochemicals; their role in pest control (Issues 04; SB951, N6.). Wiley

    Google ScholarĀ 

  • Nowack, C., Peram, P. S., Wenzel, S., Rakotoarison, A., Glaw, F., Poth, D., Schulz, S., & Vences, M. (2017). Volatile compound secretion coincides with modifications of the olfactory organ in mantellid frogs. Journal of Zoology, 303(1), 72ā€“81.

    Google ScholarĀ 

  • Nunes, A. L., Richter-Boix, A., Laurila, A., & Rebelo, R. (2013). Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia, 171(1), 115ā€“127.

    PubMedĀ  Google ScholarĀ 

  • Nunes, A. L., Orizaola, G., Laurila, A., & Rebelo, R. (2014a). Morphological and life-history responses of anurans to predation by an invasive crayfish: An integrative approach. Ecology and Evolution, 4(8), 1491ā€“1503.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nunes, A. L., Orizaola, G., Laurila, A., & Rebelo, R. (2014b). Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology, 95(6), 1520ā€“1530.

    PubMedĀ  Google ScholarĀ 

  • Nystrom, P., & Abjornsson, K. (2000). Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos, 88(1), 181ā€“190.

    CASĀ  Google ScholarĀ 

  • Ogurtsov, S. V. (2004). Olfactory orientation in anuran amphibians. Russian Journal of Herpetology, 11, 35ā€“40.

    Google ScholarĀ 

  • PaÅ”ukonis, A., Trenkwalder, K., Ringler, M., Ringler, E., Mangione, R., Steininger, J., Warrington, I., & Hƶdl, W. (2016). The significance of spatial memory for water finding in a tadpole-transporting frog. Animal Behaviour, 116, 89ā€“98.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pearl, C. A., Cervantes, M., Chan, M., Ho, U., Shoji, R., & Thomas, E. O. (2000). Evidence for a mate-attracting chemosignal in the dwarf African clawed frog Hymenochirus. Hormones and Behavior, 38(1), 67ā€“74.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pearl, C. A., Adams, M. J., Schuytema, G. S., & Nebeker, A. V. (2003). Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States. Journal of Herpetology, 37(3), 572ā€“576.

    Google ScholarĀ 

  • Pease, K. M., & Wayne, R. K. (2014). Divergent responses of exposed and naive Pacific tree frog tadpoles to invasive predatory crayfish. Oecologia, 174(1), 241ā€“252.

    PubMedĀ  Google ScholarĀ 

  • Peram, P. S., Vences, M., & Schulz, S. (2017). A synthetic dodecanolide library for the identification of putative semiochemicals emitted by mantellid frogs. Organic & Biomolecular Chemistry, 15(33), 6967ā€“6977.

    CASĀ  Google ScholarĀ 

  • Petranka, J. W. (1989). Response of toad tadpoles to conflicting chemical stimuli: Predator avoidance versus optimal foraging. Herpetologica, 45, 283ā€“292.

    Google ScholarĀ 

  • Petranka, J., & Hayes, L. (1998). Chemically mediated avoidance of a predatory odonate (Anax junius) by American toad (Bufo americanus) and wood frog (Rana sylvatica) tadpoles. Behavioral Ecology and Sociobiology, 42(4), 263ā€“271.

    Google ScholarĀ 

  • Petranka, J. W., Kats, L. B., & Sih, A. (1987). Predator-prey interactions among fish and larval amphibians: Use of chemical cues to detect predatory fish. Animal Behaviour, 35(2), 420ā€“425.

    Google ScholarĀ 

  • Pfeiffer, W. (1966). Die Verbreitung der Schreckreaktion bei Kaulquappen und die Herkunft des Schreckstoffes. Journal of Comparative Physiology A, 52, 79ā€“98.

    Google ScholarĀ 

  • Phuge, S., & Phuge, A. (2019). Predator-prey interactions of tadpoles in different layers of the water column. Journal of Ethology, 37(2), 197ā€“202.

    Google ScholarĀ 

  • Pizzatto, L., & Shine, R. (2009). Native Australian frogs avoid the scent of invasive cane toads. Austral Ecology, 34(1), 77ā€“82.

    Google ScholarĀ 

  • Pizzatto, L., Stockwell, M., Clulow, S., Clulow, J., & Mahony, M. (2014). Chemical communication in green and golden bell frogs: Do tadpoles respond to chemical cues from dead conspecifics? Chemoecology, 24(5), 171ā€“177.

    CASĀ  Google ScholarĀ 

  • Pizzatto, L., Stockwell, M., Clulow, S., Clulow, J., & Mahony, M. (2015). Finding a place to live: Conspecific attraction affects habitat selection in juvenile green and golden bell frogs. Acta Ethologica, 19(1), 1ā€“8.

    Google ScholarĀ 

  • Polo-Cavia, N., & Gomez-Mestre, I. (2014). Learned recognition of introduced predators determines survival of tadpole prey. Functional Ecology, 28(2), 432ā€“439.

    Google ScholarĀ 

  • Polo-Cavia, N., Gonzalo, A., Lopez, P., & Martin, J. (2010). Predator recognition of native but not invasive turtle predators by naive anuran tadpoles. Animal Behaviour, 80(3), 461ā€“466.

    Google ScholarĀ 

  • Polo-Cavia, N., Burraco, P., & Gomez-Mestre, I. (2016). Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition. Aquatic Toxicology, 172, 30ā€“35.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Poth, D., Wollenberg, K. C., Vences, M., & Schulz, S. (2012). Volatile amphibian pheromones: Macrolides from Mantellid frogs from Madagascar. Angewandte Chemie, International Edition, 51(9), 2187ā€“2190.

    PubMedĀ  Google ScholarĀ 

  • Poth, D., Peram, P. S., Vences, M., & Schulz, S. (2013). Macrolides and alcohols as scent gland constituents of the Madagascan frog Mantidactylus femoralis and their intraspecific diversity. Journal of Natural Products, 76(9), 1548ā€“1558.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Preston, D. B., & Forstner, M. R. J. (2015). Houston Toad (Bufo (Anaxyrus) houstonensis) tadpoles decrease their activity in response to chemical cues produced from the predation of conspecifics and congeneric (Bufo (Incilius) nebulifer) Tadpoles. Journal of Herpetology, 49(2), 170ā€“175.

    Google ScholarĀ 

  • Pueta, M., & Perotti, M. G. (2016). Anuran tadpoles learn to recognize injury cues from members of the same prey guild. Animal Cognition, 19(4), 745ā€“751.

    PubMedĀ  Google ScholarĀ 

  • Pueta, M., Ardanaz, D., & Tallone, J. C. (2022). Habituation in anuran tadpoles and the role of risk uncertainty. Animal Cognition, 25(1), 63ā€“72.

    PubMedĀ  Google ScholarĀ 

  • Pyron, A. R., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543ā€“583.

    PubMedĀ  Google ScholarĀ 

  • Rabb, G. B., & Rabb, M. S. (1963). Additional observations on breeding behavior of the Surinam toad, Pipa pipa. Copeia, 1963(4), 636ā€“642.

    Google ScholarĀ 

  • Raices, M., Jungblut, L. D., & Pozzi, A. G. (2020). Evidence of the peptide identity of the epidermal alarm cue in tadpoles of the toad Rhinella arenarum. Herpetological Journal, 30(4), 230ā€“233.

    Google ScholarĀ 

  • Rajchard, J. (2005). Sex pheromones in amphibians: A review. Veterinary Medicine, 50(9), 383ā€“389.

    Google ScholarĀ 

  • Rajchard, J. (2006). Antipredator pheromones in amphibians: A review. Veterinary Medicine, 51(8), 409ā€“413.

    CASĀ  Google ScholarĀ 

  • Ramamonjisoa, N., Rakotonoely, H., & Natuhara, Y. (2018). Defense investments and growth responses under different predation risks and gape-limitation predation threats in a tadpole prey. Behavioral Ecology and Sociobiology, 72(9), 1ā€“11.

    Google ScholarĀ 

  • Raven, C., Shine, R., Greenlees, M., Schaerf, T. M., & Ward, A. J. W. (2017). The role of biotic and abiotic cues in stimulating aggregation by larval cane toads (Rhinella marina). Ethology, 123(10), 724ā€“735.

    Google ScholarĀ 

  • Rivera-HernĆ”ndez, I. A. E., Crane, A. L., Pollock, M. S., & Ferrari, M. C. O. (2022). Disturbance cues function as a background risk cue but not as an associative learning cue in tadpoles. Animal Cognition, 25, 1ā€“9.

    Google ScholarĀ 

  • Rƶdin, P., Forsman, A., & Hagman, M. (2011). Taxonomic patterns of tadpole behavioural responses to alarm cues. In J. Murray (Ed.), Frogs: Biology, ecology and uses (pp. 123ā€“140). Nova Science Publishers.

    Google ScholarĀ 

  • Rojas, V., Labra, A., ValdĆ©s, J. L., & VelĆ”squez, N. A. (2021). Females of the four-eyed frog, Pleurodema thaul (Anura, Leptodactylidae), respond behaviourally to conspecific male scent. Herpetozoa, 34, 115ā€“120.

    Google ScholarĀ 

  • Ruther, J., Meiners, T., & Steidle, J. L. (2002). Rich in phenomena-lacking in terms. A classification of kairomones. Chemoecology, 12(4), 161ā€“167.

    Google ScholarĀ 

  • Saidapur, S. K., Veeranagoudar, D. K., Hiragond, N. C., & Shanbhag, B. A. (2009). Mechanism of predator-prey detection and behavioral responses in some anuran tadpoles. Chemoecology, 19(1), 21ā€“28.

    Google ScholarĀ 

  • Sbarbati, A., & Osculati, F. (2006). Allelochemical communication in vertebrates: Kairomones, allomones and synomones. Cells, Tissues, Organs, 183(4), 206ā€“219.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Scherer, A. E., & Smee, D. L. (2016). A review of predator diet effects on prey defensive responses. Chemoecology, 26(3), 83ā€“100.

    CASĀ  Google ScholarĀ 

  • Schley, L., & Griffiths, R. A. (1998). Midwife toads (Alytes muletensis) avoid chemical cues from snakes (Natrix maura). Journal of Herpetology, 32(4), 572ā€“574.

    Google ScholarĀ 

  • Schoeppner, N. M., & Relyea, R. A. (2005). Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecology Letters, 8(5), 505ā€“512.

    PubMedĀ  Google ScholarĀ 

  • Schulte, L. M. (2016). Semiochemicals in anurans: Testing different categories with one poison frog species. In B. A. Schulte, T. E. Goodwin, & M. H. Ferkin (Eds.), Chemical signals in vertebrates, volume 13 (pp. 339ā€“350). Springer.

    Google ScholarĀ 

  • Schulte, L. M., & Lƶtters, S. (2013). The power of the seasons: Rainfall triggers parental care in poison frogs. Evolutionary Ecology, 27(4), 711ā€“723.

    Google ScholarĀ 

  • Schulte, L. M., & Lƶtters, S. (2014). A danger foreseen is a danger avoided: how chemical cues of different tadpoles influence parental decisions of a Neotropical poison frog. Animal Cognition, 17(2), 267ā€“275.

    PubMedĀ  Google ScholarĀ 

  • Schulte, L. M., & Mayer, M. (2017). Poison frog tadpoles seek parental transportation to escape their cannibalistic siblings. Journal of Zoology, 303(2), 83ā€“89.

    Google ScholarĀ 

  • Schulte, L. M., & RĆ¶ĆŸler, D. C. (2013). Do poison frogs recognize chemical cues of the other sex or do they react to cues of stressed conspecifics? Behavioural Processes, 100, 32ā€“35.

    PubMedĀ  Google ScholarĀ 

  • Schulte, L. M., & Veith, M. (2014). Is the response of a Neotropical poison frog (Ranitomeya variabilis) to larval chemical cues influenced by relatedness? The Herpetological Journal, 24(3), 189ā€“192.

    Google ScholarĀ 

  • Schulte, L. M., Yeager, J., Schulte, R., Veith, M., Werner, P., Beck, L. A., & Lƶtters, S. (2011). The smell of success: choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Animal Behaviour, 81(6), 1147ā€“1154.

    Google ScholarĀ 

  • Schulte, L. M., Schulte, R., & Lƶtters, S. (2013). Avoiding predation: The importance of chemical and visual cues in poison frog reproductive behaviour. In M. L. East & M. Dehnhard (Eds.), Chemical signals in vertebrates 12 (Vol. 12, pp. 309ā€“321). Springer.

    Google ScholarĀ 

  • Schulte, L. M., Krauss, M., Lƶtters, S., Schulze, T., & Brack, W. (2015). Decoding and discrimination of chemical cues and signals: Avoidance of predation and competition during parental care behavior in sympatric poison frogs. PLoS One, 10(7), e0129929.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Schulte, L. M., Ringler, E., Rojas, B., & Stynoski, J. L. (2020). Developments in amphibian parental care research: History, present advances, and future perspectives. Herpetological Monographs, 34(1), 71ā€“97.

    Google ScholarĀ 

  • Schulte, L. M., Martel, A., Cruz-Elizalde, R., RamĆ­rez-Bautista, A., & Bossuyt, F. (2021). Love bites: male frogs (Plectrohyla, Hylidae) use teeth scratching to deliver sodefrin precursor-like factors to females during amplexus. Frontiers in Zoology, 18(1), 1ā€“14.

    Google ScholarĀ 

  • Schulte, L. M., Jendras, J., Twomey, E., Ramirez-Bautista, A., & Bossuyt, F. (2022). Gene expression of secretory proteins in the nuptial pads of three Lithobates species (Anura: Ranidae). Amphibia-Reptilia, 1, 1ā€“9, online first.

    Google ScholarĀ 

  • Schulz, S., Poth, D., Peram, P. S., Hƶtling, S., Menke, M., Melnik, K., & Rƶpke, R. (2021). Chemical diversity of volatile macrocylic lactones from frogs. Synlett, 32(17), 1683ā€“1701.

    CASĀ  Google ScholarĀ 

  • Scribano, G., Balestrieri, A., Gazzola, A., & Pellitteri-Rosa, D. (2020). Strong behavioural defensive responses of endemic Rana latastei tadpoles induced by a native predatorā€™s odour. Ethology, 126(9), 922ā€“930.

    Google ScholarĀ 

  • Shaffery, H. M., & Relyea, R. A. (2016). Dissecting the smell of fear from conspecific and heterospecific prey: Investigating the processes that induce anti-predator defenses. Oecologia, 180(1), 55ā€“65.

    PubMedĀ  Google ScholarĀ 

  • Sharma, S. S., Veeranagoudar, D. K., Shanbhag, B. A., & Saidapur, S. K. (2008). Activity of Sphaerotheca breviceps tadpoles in response to chemical cues of the predaceous tadpoles Hoplobatrachus tigerinus. Journal of Ethology, 26(3), 303ā€“307.

    Google ScholarĀ 

  • Sievers, M., Hale, R., Swearer, S. E., & Parris, K. M. (2018). Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicology and Environmental Safety, 161, 482ā€“488.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Smith, G. R., & Fortune, D. T. (2009). Hatching plasticity of wood frog (Rana sylvatica) eggs in response to mosquitofish (Gambusia affinis) cues. Herpetological Conservation and Biology, 4(1), 43ā€“47.

    Google ScholarĀ 

  • South, J., Botha, T. L., Wolmarans, N. J., Wepener, V., & Weyl, O. L. F. (2020). Playing with food: Detection of prey injury cues stimulates increased functional foraging traits in Xenopus laevis. African Zoology, 55(1), 25ā€“33.

    Google ScholarĀ 

  • Stabell, O. B. (2005). Latent alarm signals: Are they present in vertebrates? In R. T. Mason, M. P. LeMaster, & D. MĆ¼ller-Schwarze (Eds.), Chemical signals in vertebrates 10 (pp. 381ā€“388). Springer.

    Google ScholarĀ 

  • Starnberger, I., Poth, D., Schulz, S., Vences, M., Knudsen, J., Barej, M. F., Rƶdel, M.-O., Walzl, M., & Hƶdl, W. (2013). Take time to smell the frogs ā€“ Vocal sac glands of reed frogs contain chemical cues on species identity. Biological Journal of the Linnean Society, 110(4), 828ā€“838.

    PubMedĀ  Google ScholarĀ 

  • Steiger, S., Schmitt, T., & Schaefer, H. M. (2011). The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B: Biological Sciences, 278(1708), 970ā€“979.

    Google ScholarĀ 

  • Still, M. B., Lea, A. M., Hofmann, H. A., & Ryan, M. J. (2019). Multimodal stimuli regulate reproductive behavior and physiology in male tĆŗngara frogs. Hormones and Behavior, 115, 104546.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Stynoski, J. L., & Noble, V. R. (2012). To beg or to freeze: Multimodal sensory integration directs behavior in a tadpole. Behavioral Ecology and Sociobiology, 66(2), 191ā€“199.

    Google ScholarĀ 

  • Stynoski, J. L., & Porras-Brenes, K. (2022). Meta-analysis of tadpole taste tests: Consumption of anuran prey across development and predator strategies. Oecologia, 199(4), 845ā€“857.

    PubMedĀ  Google ScholarĀ 

  • Summey, M. R., & Mathis, A. (1998). Alarm responses to chemical stimuli from damaged conspecifics by larval anurans: Tests of three neotropical species. Herpetologica, 54(3), 402ā€“408.

    Google ScholarĀ 

  • Supekar, S. C., & Gramapurohit, N. P. (2017). Can embryonic skipper frogs (Euphlyctis cyanophlyctis) learn to recognise kairomones in the absence of a nervous system? Journal of Biosciences, 42(3), 459ā€“468.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Supekar, S. C., & Gramapurohit, N. P. (2022). Experience window influences development and retention of memory to recognize predators in the larval skipper frogs. Current Science, 122(8), 951ā€“957.

    Google ScholarĀ 

  • Swart, C. C., & Taylor, R. C. (2004). Behavioral interactions between the giant water bug (Belostoma lutarium) and tadpoles of Bufo woodhousii. Southeastern Naturalist, 3(1), 13ā€“24.

    Google ScholarĀ 

  • Symonds, M. R. E., & Elgar, M. A. (2008). The evolution of pheromone diversity. Trends in Ecology & Evolution, 23(4), 220ā€“228.

    Google ScholarĀ 

  • Szabo, B., Mangione, R., Rath, M., PaÅ”ukonis, A., Reber, S. A., Oh, J., Ringler, M., & Ringler, E. (2021). Naive poison frog tadpoles use bi-modal cues to avoid insect predators but not heterospecific predatory tadpoles. Journal of Experimental Biology, 224(24), jeb243647.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Takahara, T., Kohmatsu, Y., Maruyama, A., Yamanaka, H., & Yamaoka, R. (2012). Inducible defense behavior of an anuran tadpole: Cue-detection range and cue types used against predator. Behavioral Ecology, 23(4), 863ā€“868.

    Google ScholarĀ 

  • Takahashi, M. (2007). Oviposition site selection: pesticide avoidance by gray treefrogs. Environmental Toxicology and Chemistry, 26(7), 1476ā€“1480.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ten Hagen, L., RodrĆ­guez, A., Menke, N., Gƶcking, C., Bisping, M., Frommolt, K.-H., Ziegler, T., Bonkowski, M., & Vences, M. (2016). Vocalizations in juvenile anurans: Common spadefoot toads (Pelobates fuscus) regularly emit calls before sexual maturity. The Science of Nature, 103(9), 1ā€“8.

    Google ScholarĀ 

  • Thomas, E. O., Tsang, L., & Licht, P. (1993). Comparative histochemistry of the sexually dimorphic skin glands of anuran amphibians. Copeia, 1993(1), 133ā€“143.

    Google ScholarĀ 

  • Touchon, J. C., Gomez-Mestre, I., & Warkentin, K. M. (2006). Hatching plasticity in two temperate anurans: Responses to a pathogen and predation cues. Canadian Journal of Zoology, 84(4), 556ā€“563.

    Google ScholarĀ 

  • Troyer, R. R., & Turner, A. M. (2015). Chemosensory perception of predators by larval amphibians depends on water quality. PLoS One, 10(6), e0131516.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • UrszĆ”n, T. J., Garamszegi, L. Z., Nagy, G., Hettyey, A., Tƶrƶk, J., & Herczeg, G. (2018). Experience during development triggers between-individual variation in behavioural plasticity. The Journal of Animal Ecology, 87, 1264ā€“1273.

    PubMedĀ  Google ScholarĀ 

  • Ɯveges, B., Basson, A. C., MĆ³ricz, Ɓ. M., BĆ³kony, V., & Hettyey, A. (2021). Chemical defence effective against multiple enemies: Does the response to conspecifics alleviate the response to predators? Functional Ecology, 35(10), 2294ā€“2304.

    Google ScholarĀ 

  • Van Bocxlaer, I., Treer, D., Maex, M., Vandebergh, W., Janssenswillen, S., Stegen, G., Kok, P., Willaert, B., Matthijs, S., Martens, E., Mortier, A., de Greve, H., Proost, P., & Bossuyt, F. (2015). Side-by-side secretion of Late Palaeozoic diverged courtship pheromones in an aquatic salamander. Proceedings of the Royal Society of London B, 282(1803) 20142960.

    Google ScholarĀ 

  • Van Buskirk, J., KrĆ¼gel, A., Kunz, J., Miss, F., & Stamm, A. (2014). The rate of degradation of chemical cues indicating predation risk: An experiment and review. Ethology, 120(9), 942ā€“949.

    Google ScholarĀ 

  • Vandenbergh, J. (2012). Pheromones and reproduction in mammals. Elsevier.

    Google ScholarĀ 

  • Vences, M., Wahl-Boos, G., Hoegg, S., Glaw, F., Spinelly Oliveira, E., Meyer, A., & Perry, S. (2007). Molecular systematics of mantelline frogs from Madagascar and the evolution of their femoral glands. Biological Journal of the Linnean Society, 92(3), 529ā€“539.

    Google ScholarĀ 

  • VodrĆ”Å¾kovĆ”, M., Å etlĆ­kovĆ”, I., & Berec, M. (2020). Chemical cues of an invasive turtle reduce development time and size at metamorphosis in the common frog. Scientific Reports, 10(1), 1ā€“6.

    Google ScholarĀ 

  • Wabnitz, P. A., Bowie, J. H., Tyler, M. J., Wallace, J. C., & Smith, B. P. (1999). Aquatic sex pheromone from a male tree frog. Nature, 401(6752), 444ā€“445.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wabnitz, P. A., Bowie, J. H., Tyler, M. J., Wallace, J. C., & Smith, B. P. (2000). Differences in the skin peptides of the male and female Australian tree frog Litoria splendida. European Journal of Biochemistry, 267(1), 269ā€“275.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Waldman, B. (1985). Olfactory basis of kin recognition in toad tadpoles. Journal of Comparative Physiology A, 156(5), 565ā€“577.

    Google ScholarĀ 

  • Waldman, B. (1986). Chemical ecology of kin recognition in anuran amphibians. In D. Duvall, D. MĆ¼ller-Schwarze, R. M. Silverstein (Eds.), Chemical signals in vertebrates 4, (Issue 4, pp. 225ā€“242). Plenum Press

    Google ScholarĀ 

  • Waldman, B. (2016). Chemical communication in archaic New Zealand frogs. In Chemical signals in vertebrates 13 (pp. 351ā€“360). Springer.

    Google ScholarĀ 

  • Waldman, B., & Bishop, P. J. (2004). Chemical communication in an archaic anuran amphibian. Behavioral Ecology, 15(1), 88.

    Google ScholarĀ 

  • Warbeck, A., & Parzefall, J. (2001). Mate recognition via waterborne chemical cues in the viviparous caecilian Typhlonectes natans (Amphibia: Gymnophiona). In A. Marchlewska-Koj, J. L. Lepri, & D. MĆ¼ller-Schwarze (Eds.), Chemical signals in vertebrates 9 (pp. 263ā€“268). Springer.

    Google ScholarĀ 

  • Wassersug, R. J., Lum, A. M., & Potel, M. J. (1981). An analysis of school structure for tadpoles (Anura: Amphibia). Behavioral Ecology and Sociobiology, 9(1), 15ā€“22.

    Google ScholarĀ 

  • Weiss, L., Manzini, I., & Hassenklƶver, T. (2021). Olfaction across the waterā€“air interface in anuran amphibians. Cell and Tissue Research, 383(1), 301ā€“325.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Westrick, S. E., Laslo, M., & Fischer, E. K. (2022). The natural history of model organisms: The big potential of the small frog Eleutherodactylus coqui. eLife, 11, e73401.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Whittaker, D. J. (2022). The secret perfume of birds: uncovering the science of Avian Scent. JHU Press.

    Google ScholarĀ 

  • Willaert, B., Bossuyt, F., Janssenswillen, S., Adriaens, D., Baggerman, G., Matthijs, S., Pauwels, E., Proost, P., Raepsaet, A., & Schoofs, L. (2013). Frog nuptial pads secrete mating season-specific proteins related to salamander pheromones. The Journal of Experimental Biology, 216(22), 4139ā€“4143.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wilson, D. J., & Lefcort, H. (1993). The effect of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles. Animal Behaviour, 46(5), 1017ā€“1019.

    Google ScholarĀ 

  • Wirsing, A. J., Roth, J. D., & Murray, D. L. (2005). Can prey use dietary cues to distinguish predators? A test involving three terrestrial amphibians. Herpetologica, 61(2), 104ā€“110.

    Google ScholarĀ 

  • Woodley, S. K. (2010). Pheromonal communication in amphibians. Journal of Comparative Physiology A, 196(10), 713ā€“727.

    CASĀ  Google ScholarĀ 

  • Woodley, S. K., & Staub, N. L. (2021). Pheromonal communication in urodelan amphibians. Cell and Tissue Research, 383, 1ā€“19.

    Google ScholarĀ 

  • Wyatt, T. D. (2014). Pheromones and animal behavior: Chemical signals and signatures. Cambridge University Press.

    Google ScholarĀ 

  • Xu, C., Gao, X., Crossland, M. R., Liu, Z., Wang, S., Zhu, W., Shine, R., & Li, Y. (2017). Foraging responses of the larvae of invasive bullfrogs (Lithobates catesbeianus): Possible implications for bullfrog control and ecological impact in China. Asian Herpetological Research, 4, 253ā€“256.

    Google ScholarĀ 

  • Zamora-Camacho, F. J., Medina-GĆ”lvez, L., & Zambrano-FernĆ”ndez, S. (2019). The roles of sex and morphology in burrowing depth of Iberian spadefoot toads in different biotic and abiotic environments. Journal of Zoology, 309(3), 224ā€“230.

    Google ScholarĀ 

  • Zhang, F., Zhao, J., Zhang, Y., Messenger, K., & Wang, Y. (2015). Antipredator behavioral responses of native and exotic tadpoles to novel predator. Asian Herpetological Research, 6, 51ā€“58.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Schulte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schulte, L.M., Lipkowski, K., Abondano Almeida, D. (2023). Chemical Communication and Semiochemical Recognition in Frogs: From Eggs to Adults. In: Schaal, B., Rekow, D., Keller, M., Damon, F. (eds) Chemical Signals in Vertebrates 15. CSiV 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-35159-4_5

Download citation

Publish with us

Policies and ethics