Skip to main content

Molecular Pathology of Ovarian Tumors

  • Chapter
  • First Online:
Molecular Surgical Pathology

Abstract

Ovarian cancer is associated with high morbidity and mortality and is the leading cause of gynecologic cancer-related death in the US. In recent years, the molecular pathophysiology of ovarian tumors has been better elucidated, allowing for the distinction of two tumor types: the more indolent type I tumors (encompassing endometrioid, clear cell, low-grade serous, and mucinous carcinomas) and the highly aggressive type II tumors (encompassing high-grade serous carcinomas and carcinosarcomas). Type I tumors are related to abnormalities in the MAPK signaling pathway (KRAS and BRAF mutations), the PI3K/Akt2/PTEN pathway, and the Wnt/beta-catenin pathway, as well as mutations in other genes such as ARID1a, PPP2R1A, and HNF1-beta. Type II tumors, in contrast, are characterized by mutations in TP53, as well as inactivation of BRCA1/2 and mutations in genes such as Notch3, Rsf-1, and NAC1. In this chapter, we discuss the characteristics and frequency of these molecular abnormalities, with an emphasis on their implications for diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Abeln EC, Smit VT, Wessels JW, et al. Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed müllerian tumours. J Pathol. 1997;183:424–31.

    Article  CAS  PubMed  Google Scholar 

  • Afify AM, Werness BA, Mark HF. HER2/neu oncogene amplification in stage I and stage III ovarian papillary serous carcinoma. Exp Mol Pathol. 1999;66:163–9.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Agha OM, Huwait HF, Chow C, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35:484–94.

    Article  PubMed  Google Scholar 

  • Anglesio MS, Kommoss S, Tolcher MC, et al. Molecular characterization of mucinous ovarian tumours supports a stratified treatment approach with HER2 targeting in 19% of carcinomas. J Pathol. 2013;229:111–20.

    Article  CAS  PubMed  Google Scholar 

  • Anglesio MS, Wang Y, Yang W, et al. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol. 2013;229:400–9.

    Article  CAS  PubMed  Google Scholar 

  • Arend RC, Davis AM, Chimiczewski P, et al. EMR 20006-012: a phase II randomized double-blind placebo controlled trial comparing the combination of pimasertib (MEK inhibitor) with SAR245409 (PI3K inhibitor) to pimasertib alone in patients with previously treated unresectable borderline or low grade ovarian cancer. Gynecol Oncol. 2020;156:301–7.

    Article  CAS  PubMed  Google Scholar 

  • A study of MEK162 vs. physician’s choice chemotherapy in patients with low-grade serous ovarian, fallopian tube or peritoneal cancer. https://ClinicalTrials.gov/show/NCT01849874.

  • Auner V, Kriegshäuser G, Tong D, et al. KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay. BMC Cancer. 2009;9:111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton CA, Hacker NF, Clark SJ, et al. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol. 2008;109:129–39.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, de Feo D, Godwin AK, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995;64(4):280–5.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JA, Pesci A, Morales-Oyarvide V, et al. Incidence of mismatch repair protein deficiency and associated clinicopathologic features in a cohort of 104 ovarian endometrioid carcinomas. Am J Surg Pathol. 2019;43:235–43.

    Article  PubMed  Google Scholar 

  • Bennett JA, Young RH, Howitt BE, et al. A distinctive adnexal (usually paratubal) neoplasm often associated with Peutz-Jeghers syndrome and characterized by STK11 alterations (STK11 adnexal tumor): a report of 22 cases. Am J Surg Pathol. 2021;45:1061–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berchuck A, Kohler MF, Marks JR, et al. The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Obstet Gynecol. 1994;170:246–52.

    CAS  Google Scholar 

  • Bessiere L, Todeschini AL, Auguste A, et al. A hot-spot of in-frame duplications activates the oncoprotein AKT1 in juvenile granulosa cell tumors. EBioMedicine. 2015;2:421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bookman MA, Darcy KM, Clarke-Pearson D, et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the gynecologic oncology group. J Clin Oncol. 2003;21:283–90.

    Article  CAS  PubMed  Google Scholar 

  • Buza N, Wong S, Hui P. FOXL2 mutation analysis of ovarian sex cord-stromal tumors: genotype-phenotype correlation with diagnostic considerations. Int J Gynecol Pathol. 2018;37:305–15.

    Article  CAS  PubMed  Google Scholar 

  • Campbell IG, Russell SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–81.

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  • Catasús L, Bussaglia E, Rodrguez I, et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol. 2004;35:1360–8.

    Article  PubMed  Google Scholar 

  • Champer M, Miller D, Kuo DY. Response to trametinib in recurrent low-grade serous ovarian cancer with NRAS mutation: a case report. Gynecol Oncol Rep. 2019;28:26–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan AM, Enwere E, McIntyre JB, et al. Combined CCNE1 high-level amplification and overexpression is associated with unfavourable outcome in tubo-ovarian high-grade serous carcinoma. J Pathol Clin Res. 2020;6:252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao WR, Lee MY, Lin WL, et al. Assessing the HER2 status in mucinous epithelial ovarian cancer on the basis of the 2013 ASCO/CAP guideline update. Am J Surg Pathol. 2014;38:1227–34.

    Article  PubMed  Google Scholar 

  • Cheng L, Roth LM, Zhang S, et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer. 2011;117:2096–103.

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhang S, Talerman A, et al. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010;41:716–23.

    Article  CAS  PubMed  Google Scholar 

  • Cherniack AD, Shen H, Walter V, et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell. 2017;31:411–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chetrit A, Hirsh-Yechezkel G, Ben-David Y, et al. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the National Israeli Study of Ovarian Cancer. J Clin Oncol. 2008;26:20–5.

    Article  PubMed  Google Scholar 

  • Cho KR. Ovarian cancer update: lessons from morphology, molecules, and mice. Arch Pathol Lab Med. 2009;133:1775–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Sheu JJ, Guan B, et al. Functional analysis of 11q13.5 amplicon identifies rsf-1 (HBXAP) as a gene involved in paclitaxel resistance in ovarian cancer. Cancer Res. 2009;69:1407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coatham M, Li X, Karnezis AN, et al. Concurrent ARID1A and ARID1B inactivation in endometrial and ovarian dedifferentiated carcinomas. Mod Pathol. 2016;29:1586–93.

    Article  CAS  PubMed  Google Scholar 

  • Counter CM, Hirte HW, Bacchetti S, et al. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A. 1994;91:2900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crasta J, Ravikumar G, Rajarajan S, et al. Expression of HER2 and EGFR proteins in advanced stage high-grade serous ovarian tumors show mutual exclusivity. Int J Gynecol Pathol. 2021;40:49–55.

    Article  CAS  PubMed  Google Scholar 

  • Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuatrecasas M, Catasus L, Palacios J, et al. Transitional cell tumors of the ovary: a comparative clinicopathologic, immunohistochemical, and molecular genetic analysis of Brenner tumors and transitional cell carcinomas. Am J Surg Pathol. 2009;33:556–67.

    Article  PubMed  Google Scholar 

  • Cuatrecasas M, Erill N, Musulen E, et al. K-ras mutations in nonmucinous ovarian epithelial tumors: a molecular analysis and clinicopathologic study of 144 patients. Cancer. 1998;82:1088–95.

    Article  CAS  PubMed  Google Scholar 

  • Cuatrecasas M, Villanueva A, Matias-Guiu X, et al. K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer. 1997;79:1581–6.

    Article  CAS  PubMed  Google Scholar 

  • Datar RH, Naritoku WY, Li P, et al. Analysis of telomerase activity in ovarian cystadenomas, low-malignant-potential tumors, and invasive carcinomas. Gynecol Oncol. 1999;74:338–45.

    Article  CAS  PubMed  Google Scholar 

  • Davidson B, Elstrand MB, McMaster MT, et al. HLA-G expression in effusions is a possible marker of tumor susceptibility to chemotherapy in ovarian carcinoma. Gynecol Oncol. 2005;96:42–7.

    Article  CAS  PubMed  Google Scholar 

  • de Kock L, Terzic T, McCluggage WG, et al. DICER1 mutations are consistently present in moderately and poorly differentiated Sertoli-Leydig cell tumors. Am J Surg Pathol. 2017;41:1178–87.

    Article  PubMed  Google Scholar 

  • Despierre E, Lambrechts D, Neven P, et al. The molecular genetic basis of ovarian cancer and its roadmap towards a better treatment. Gynecol Oncol. 2010;117:358–65.

    Article  CAS  PubMed  Google Scholar 

  • Dimova I, Zaharieva B, Raitcheva S, et al. Tissue microarray analysis of EGFR and erbB2 copy number changes in ovarian tumors. Int J Gynecol Cancer. 2006;16:145–51.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Valentin M, Sampson JR, Seppala TT, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective lynch syndrome database. Genet Med. 2020;22:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Drew Y, Calvert H. The potential of PARP inhibitors in genetic breast and ovarian cancers. Ann N Y Acad Sci. 2008;1138:136–45.

    Article  CAS  PubMed  Google Scholar 

  • Faratian D, Zweemer AJ, Nagumo Y, et al. Trastuzumab and pertuzumab produce changes in morphology and estrogen receptor signaling in ovarian cancer xenografts revealing new treatment strategies. Clin Cancer Res. 2011;17:4451–61.

    Article  CAS  PubMed  Google Scholar 

  • Farley J, Brady WE, Vathipadiekal V, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol. 2013;14:134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farley J, Smith LM, Darcy KM, et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a gynecologic oncology group study. Cancer Res. 2003;63:1235–41.

    CAS  PubMed  Google Scholar 

  • Fleming NI, Knower KC, Lazarus KA, et al. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One. 2010;5:e14389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlander ML, Russell K, Millis S, et al. Molecular profiling of clear cell ovarian cancers: identifying potential treatment targets for clinical trials. Int J Gynecol Cancer. 2016;26:648–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Enomoto T, Yoshino K, et al. Microsatellite instability and alterations in the hMSH2 gene in human ovarian cancer. Int J Cancer. 1995;64:361–6.

    Article  CAS  PubMed  Google Scholar 

  • Fulvestrant plus abemaciclib in women with advanced low grade serous carcinoma. https://ClinicalTrials.gov/show/NCT03531645.

  • Gallardo A, Matias-Guiu X, Lagarda H, et al. Malignant müllerian mixed tumor arising from ovarian serous carcinoma: a clinicopathologic and molecular study of two cases. Int J Gynecol Pathol. 2002;21:268–72.

    Article  PubMed  Google Scholar 

  • Gamallo C, Palacios J, Moreno G, et al. Beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol. 1999;155:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomark Prev. 2014;23:2965–70.

    Article  CAS  Google Scholar 

  • Gemignani ML, Schlaerth AC, Bogomolniy F, et al. Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. Gynecol Oncol. 2003;90(2):378–81.

    Article  CAS  PubMed  Google Scholar 

  • Gershenson DM, Sun CC, Wong KK. Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum. Br J Cancer. 2015;113:1254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon AN, Finkler N, Edwards RP, et al. Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer. 2005;15:785–92.

    Article  CAS  PubMed  Google Scholar 

  • Gordon MS, Matei D, Aghajanian C, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol. 2006;24:4324–32.

    Article  CAS  PubMed  Google Scholar 

  • Gorringe KL, Cheasley D, Wakefield MJ, et al. Therapeutic options for mucinous ovarian carcinoma. Gynecol Oncol. 2020;156:552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulvent T, Ray-Coquard I, Borel S, et al. DICER1 and FOXL2 mutations in ovarian sex cord-stromal tumours: a GINECO group study. Histopathology. 2016;68:279–85.

    Article  PubMed  Google Scholar 

  • Gras E, Catasús L, Arguelles R, et al. Microsatellite instability, MLH-1 promoter hypermethylation, and frameshift mutations at coding mononucleotide repeat microsatellites in ovarian tumors. Cancer. 2001;92:2829–36.

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Paul J, Brown R. Critical evaluation of p53 as a prognostic marker in ovarian cancer. Expert Rev. Mol Med. 2004;6:1–20.

    Article  PubMed  Google Scholar 

  • Havrilesky L, Darcy KM, Hamdan H, et al. Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2003;21:3814–25.

    Article  CAS  PubMed  Google Scholar 

  • Helder-Woolderink JM, Blok EA, Vasen HF, et al. Ovarian cancer in lynch syndrome; a systematic review. Eur J Cancer. 2016;55:65–73.

    Article  CAS  PubMed  Google Scholar 

  • Hersmus R, Stoop H, van de Geijn GJ, et al. Prevalence of c-KIT mutations in gonadoblastoma and dysgerminomas of patients with disorders of sex development (DSD) and ovarian dysgerminomas. PLoS One. 2012;7:e43952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CL, Kurman RJ, Dehari R, et al. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 2004;64:6915–8.

    Article  CAS  PubMed  Google Scholar 

  • Hoang LN, McConechy MK, Kobel M, et al. Polymerase epsilon exonuclease domain mutations in ovarian endometrioid carcinoma. Int J Gynecol Cancer. 2015;25:1187–93.

    Article  PubMed  Google Scholar 

  • Hoei-Hansen CE, Kraggerud SM, Abeler VM, et al. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer. 2007;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogdall EV, Christensen L, Kjaer SK, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA ovarian cancer study. Cancer. 2003;98:66–73.

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi GN, Stemmer SM, Burris HA, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375:1738–48.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Bristow R, Cha MS, et al. Characterization of active mitogen-activated protein kinase in ovarian serous carcinomas. Clin Cancer Res. 2004;10:6432–6.

    Article  CAS  PubMed  Google Scholar 

  • Hunter SM, Anglesio MS, Ryland GL, et al. Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes. Oncotarget. 2015;6:37663–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishibashi T, Nakayama K, Razia S, et al. High frequency of PIK3CA mutations in low-grade serous ovarian carcinomas of Japanese patients. Diagnostics (Basel). 2019;10:13.

    Article  PubMed  Google Scholar 

  • Ishibashi M, Nakayama K, Yeasmin S, et al. A BTB/POZ gene, NAC-1, a tumor recurrence-associated gene, as a potential target for taxol resistance in ovarian cancer. Clin Cancer Res. 2008;14:3149–55.

    Article  CAS  PubMed  Google Scholar 

  • Jamieson S, Butzow R, Andersson N, et al. The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod Pathol. 2010;23:1477–85.

    Article  CAS  PubMed  Google Scholar 

  • Jazaeri AA, Yee CJ, Sotiriou C, et al. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst. 2002;94:990–1000.

    Article  CAS  PubMed  Google Scholar 

  • Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46:424–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinawath N, Vasoontara C, Yap KL, et al. NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway. Oncogene. 2009;28:1941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Wang TL, Shih I, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalfa N, Ecochard A, Patte C, et al. Activating mutations of the stimulatory g protein in juvenile ovarian granulosa cell tumors: a new prognostic factor? J Clin Endocrinol Metab. 2006;91:1842–7.

    Article  CAS  PubMed  Google Scholar 

  • Karnezis AN, Wang Y, Keul J, et al. DICER1 and FOXL2 mutation status correlates with clinicopathologic features in ovarian Sertoli-Leydig cell tumors. Am J Surg Pathol. 2019;43:628–38.

    Article  PubMed  Google Scholar 

  • Kato N, Tamura G, Motoyama T. Hypomethylation of hepatocyte nuclear factor-1beta (HNF-1beta) CpG Island in clear cell carcinoma of the ovary. Virchows Arch. 2008;452:175–80.

    Article  CAS  PubMed  Google Scholar 

  • Khani F, Diolombi ML, Khattar P, et al. Benign and malignant Brenner tumors show an absence of TERT promoter mutations that are commonly present in urothelial carcinoma. Am J Surg Pathol. 2016;40:1291–5.

    Article  PubMed  Google Scholar 

  • Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31:161–9.

    Article  PubMed  Google Scholar 

  • Kobel M, Hoang LN, Tessier-Cloutier B, et al. Undifferentiated endometrial carcinomas show frequent loss of core switch/sucrose nonfermentable complex proteins. Am J Surg Pathol. 2018;42:76–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kounelis S, Jones MW, Papadaki H, et al. Carcinosarcomas (malignant mixed müllerian tumors) of the female genital tract: comparative molecular analysis of epithelial and mesenchymal components. Hum Pathol. 1998;29:82–7.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn E, Ayhan A, Bahadirli-Talbott A, et al. Molecular characterization of undifferentiated carcinoma associated with endometrioid carcinoma. Am J Surg Pathol. 2014;38:660–5.

    Article  PubMed  Google Scholar 

  • Kuhn E, Ayhan A, Shih Ie M, et al. The pathogenesis of atypical proliferative Brenner tumor: an immunohistochemical and molecular genetic analysis. Mod Pathol. 2014;27:231–7.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn E, Meeker A, Wang TL, et al. Shortened telomeres in serous tubal intraepithelial carcinoma: an early event in ovarian high-grade serous carcinogenesis. Am J Surg Pathol. 2010;34:829–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo KT, Mao TL, Jones S, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174:1597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupryjanczyk J, Thor AD, Beauchamp R, et al. p53 gene mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci U S A. 1993;90:4961–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurman RJ, Shih I. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34:433–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurman RJ, Shih I. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer–shifting the paradigm. Hum Pathol. 2011;42:918–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassus H, Sihto H, Leminen A, et al. Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma. J Mol Med (Berl). 2006;84:671–81.

    Article  CAS  PubMed  Google Scholar 

  • Ledermann J, Colombo N, Oza A, et al. Avelumab in combination with and/or following chemotherapy vs. chemotherapy alone in patients with previously untreated epithelial ovarian cancer: results from the phase 3 javelin ovarian 100 trial. Gynecol Oncol. 2020;159:13–4.

    Article  Google Scholar 

  • Lee JH, Lee SY, Lee JH, et al. p21 WAF1 is involved in interferon-beta-induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression in ovarian cancer. Mol Cells. 2010;30:327–33.

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Yi Y, Yao Z. Growth arrest in ovarian cancer cells by hTERT inhibition short-hairpin RNA targeting human telomerase reverse transcriptase induces immediate growth inhibition but not necessarily induces apoptosis in ovarian cancer cells. Cancer Investig. 2009;27:960–70.

    Article  CAS  Google Scholar 

  • Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Mert I, Chhina J, Allo G, et al. Synergistic effect of MEK inhibitor and metformin combination in low grade serous ovarian cancer. Gynecol Oncol. 2017;146:319–26.

    Article  CAS  PubMed  Google Scholar 

  • Milea A, George SH, Matevski D, et al. Retinoblastoma pathway deregulatory mechanisms determine clinical outcome in high-grade serous ovarian carcinoma. Mod Pathol. 2014;27:991–1001.

    Article  CAS  PubMed  Google Scholar 

  • Min A, Im SA, Yoon YK, et al. RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib. Mol Cancer Ther. 2013;12:865–77.

    Article  CAS  PubMed  Google Scholar 

  • Moes-Sosnowska J, Szafron L, Nowakowska D, et al. Germline SMARCA4 mutations in patients with ovarian small cell carcinoma of hypercalcemic type. Orphanet J Rare Dis. 2015;10:32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore K, Colombo N, Scambia G, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.

    Article  CAS  PubMed  Google Scholar 

  • Moore KN, Bookman M, Sehouli J, et al. LBA31 primary results from IMagyn050/GOG 3015/ENGOT-OV39, a double-blind placebo (pbo)-controlled randomised phase III trial of bevacizumab (bev)-containing therapy +/− atezolizumab (atezo) for newly diagnosed stage III/IV ovarian cancer (OC). Ann Oncol. 2020;31:S1161–2.

    Article  Google Scholar 

  • Moujaber T, Etemadmoghadam D, Kennedy CJ, et al. BRAF mutations in low-grade serous ovarian cancer and response to BRAF inhibition. JCO Precis Oncol. 2018;2:1–14.

    PubMed  Google Scholar 

  • Makarla PB, Saboorian MH, Ashfaq R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res. 2005;11:5365–9.

    Article  CAS  PubMed  Google Scholar 

  • Marquez RT, Baggerly KA, Patterson AP, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 2005;11:6116–26.

    Article  CAS  PubMed  Google Scholar 

  • Matz M, Coleman MP, Sant M, et al. The histology of ovarian cancer: worldwide distribution and implications for international survival comparisons (CONCORD-2). Gynecol Oncol. 2017;144:405–13.

    Article  PubMed  Google Scholar 

  • Mayr D, Hirschmann A, Löhrs U, Diebold J. KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006;103:883–7.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine JN, Wiegand KC, Vang R, et al. HER2 overexpression and amplification is present in a subset of ovarian mucinous carcinomas and can be targeted with trastuzumab therapy. BMC Cancer. 2009;9:433.

    Article  PubMed  PubMed Central  Google Scholar 

  • McConechy MK, Anglesio MS, Kalloger SE, et al. Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol. 2011;223:567–73.

    Article  CAS  PubMed  Google Scholar 

  • McConechy MK, Ding J, Senz J, et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol. 2014;27:128–34.

    Article  CAS  PubMed  Google Scholar 

  • Medeiros F, Muto MG, Lee Y, et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol. 2006;30:230–6.

    Article  PubMed  Google Scholar 

  • Mok SC, Bell DA, Knapp RC, et al. Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res. 1993;53:1489–92.

    CAS  PubMed  Google Scholar 

  • Morand S, Devanaboyina M, Staats H, et al. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22:6532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Bueno G, Gamallo C, Perez-Gallego L, et al. Beta-catenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas. Diagn Mol Pathol. 2001;10:116–22.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama N, Davidson B, et al. A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. Proc Natl Acad Sci U S A. 2006a;103:18739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama K, Nakayama N, Kurman RJ, et al. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther. 2006b;5:779–85.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama N, Jinawath N, et al. Amplicon profiles in ovarian serous carcinomas. Int J Cancer. 2007a;120:2613–7.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama N, Wang TL, et al. NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer Res. 2007b;67:8058–64.

    Article  CAS  PubMed  Google Scholar 

  • Nazlioglu HO, Ercan I, Bilgin T, et al. Expression of p16 in serous ovarian neoplasms. Eur J Gynaecol Oncol. 2010;31:312–4.

    CAS  PubMed  Google Scholar 

  • Noe M, Ayhan A, Wang TL, et al. Independent development of endometrial epithelium and stroma within the same endometriosis. J Pathol. 2018;245:265–9.

    Article  PubMed  Google Scholar 

  • Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58:2095–7.

    CAS  PubMed  Google Scholar 

  • O’Neill CJ, McBride HA, Connolly LE, et al. High-grade ovarian serous carcinoma exhibits significantly higher p16 expression than low-grade serous carcinoma and serous borderline tumour. Histopathology. 2007;50:773–9.

    Article  PubMed  Google Scholar 

  • Park JT, Li M, Nakayama K, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66:6312–8.

    Article  CAS  PubMed  Google Scholar 

  • Parra-Herran C, Lerner-Ellis J, Xu B, et al. Molecular-based classification algorithm for endometrial carcinoma categorizes ovarian endometrioid carcinoma into prognostically significant groups. Mod Pathol. 2017;30:1748–59.

    Article  CAS  PubMed  Google Scholar 

  • Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94.

    Article  CAS  PubMed  Google Scholar 

  • Pavanello M, Chan IH, Ariff A, et al. Rare germline genetic variants and the risks of epithelial ovarian cancer. Cancers (Basel). 2020;12:3046.

    Article  CAS  PubMed  Google Scholar 

  • Peiro G, Diebold J, Mayr D, et al. Prognostic relevance of hMLH1, hMSH2, and BAX protein expression in endometrial carcinoma. Mod Pathol. 2001;14:777–83.

    Article  CAS  PubMed  Google Scholar 

  • Perego P, Giarola M, Righetti SC, et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res. 1996;56:556–62.

    CAS  PubMed  Google Scholar 

  • Petersen S, Wilson AJ, Hirst J, et al. CCNE1 and BRD4 co-amplification in high-grade serous ovarian cancer is associated with poor clinical outcomes. Gynecol Oncol. 2020;157:405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfarr N, Darb-Esfahani S, Leichsenring J, et al. Mutational profiles of Brenner tumors show distinctive features uncoupling urothelial carcinomas and ovarian carcinoma with transitional cell histology. Genes Chromosomes Cancer. 2017;56:758–66.

    Article  CAS  PubMed  Google Scholar 

  • Pfisterer J, Du Bois A, Bentz EK, et al. Prognostic value of human epidermal growth factor receptor 2 (her-2)/neu in patients with advanced ovarian cancer treated with platinum/paclitaxel as first-line chemotherapy: a retrospective evaluation of the AGO-OVAR 3 trial by the AGO OVAR Germany. Int J Gynecol Cancer. 2009;19:109–15.

    Article  PubMed  Google Scholar 

  • Piek JM, van Diest PJ, Zweemer RP, et al. Dysplastic changes in prophylactically removed fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 2001;195:451–6.

    Article  CAS  PubMed  Google Scholar 

  • Pohl G, Ho CL, Kurman RJ, et al. Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations. Cancer Res. 2005;65:1994–2000.

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Nakayama K, Rahman MT, et al. PPP2R1A mutation is a rare event in ovarian carcinoma across histological subtypes. Anticancer Res. 2013;33:113–8.

    CAS  PubMed  Google Scholar 

  • Rahman N, Stratton MR. The genetics of breast cancer susceptibility. Annu Rev. Genet. 1998;32:95–121.

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam P, Croce S, McCluggage WG. Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology. Histopathology. 2017;70:359–66.

    Article  PubMed  Google Scholar 

  • Rambau PF, McIntyre JB, Taylor J, et al. Morphologic reproducibility, genotyping, and immunohistochemical profiling do not support a category of seromucinous carcinoma of the ovary. Am J Surg Pathol. 2017;41:685–95.

    Article  PubMed  Google Scholar 

  • Ramos P, Karnezis AN, Craig DW, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet. 2014;46:427–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramus SJ, Song H, Dicks E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107:djv214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray-Coquard I, Pautier P, Pignata S, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381:2416–28.

    Article  CAS  PubMed  Google Scholar 

  • Ribociclib and letrozole treatment in ovarian cancer. https://ClinicalTrials.gov/show/NCT03673124.

  • Ross JS, Yang F, Kallakury BV, et al. HER2/neu oncogene amplification by fluorescence in situ hybridization in epithelial tumors of the ovary. Am J Clin Pathol. 1999;111:311–6.

    Article  CAS  PubMed  Google Scholar 

  • Rubin SC, Blackwood MA, Bandera C, et al. BRCA1, BRCA2, and hereditary nonpolyposis colorectal cancer gene mutations in an unselected ovarian cancer population: relationship to family history and implications for genetic testing. Am J Obstet Gynecol. 1998;178:670–7.

    Article  CAS  PubMed  Google Scholar 

  • Ryland GL, Hunter SM, Doyle MA, et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 2015;7:87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000;60:7052–6.

    CAS  PubMed  Google Scholar 

  • Schilder RJ, Sill MW, Chen X, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a gynecologic oncology group study. Clin Cancer Res. 2005;11:5539–48.

    Article  CAS  PubMed  Google Scholar 

  • Schlosshauer PW, Deligdisch L, Penault-Llorca F, et al. Loss of p16INK4A expression in low-grade ovarian serous carcinomas. Int J Gynecol Pathol. 2011;30:22–9.

    Article  PubMed  Google Scholar 

  • Schultz KAP, Stewart DR, Kamihara J, et al. DICER1 tumor predisposition. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews((R)). Seattle, WA: University of Washington, Seattle; 1993.

    Google Scholar 

  • Seidman JD, Yemelyanova A, Zaino RJ, et al. The fallopian tube-peritoneal junction: a potential site of carcinogenesis. Int J Gynecol Pathol. 2011;30:4–11.

    Article  PubMed  Google Scholar 

  • Shah SP, Kobel M, Senz J, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360:2719–29.

    Article  CAS  PubMed  Google Scholar 

  • Sheu JJ, Choi JH, Yildiz I, et al. The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of rsf-1. Cancer Res. 2008;68:4050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih I, Davidson B. Pathogenesis of ovarian cancer: clues from selected overexpressed genes. Future Oncol. 2009;5:1641–57.

    Article  CAS  PubMed  Google Scholar 

  • Shih I, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164:1511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih Ie M, Panuganti PK, Kuo KT, et al. Somatic mutations of PPP2R1A in ovarian and uterine carcinomas. Am J Pathol. 2011;178:1442–7.

    Article  PubMed  Google Scholar 

  • Shih I, Sheu JJ, Santillan A, et al. Amplification of a chromatin remodeling gene, rsf-1/HBXAP, in ovarian carcinoma. Proc Natl Acad Sci U S A. 2005;102:14004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieben NL, Macropoulos P, Roemen GM, et al. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 2004;202:336–40.

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  • Singer G, Kurman RJ, Chang HW, et al. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol. 2002;160:1223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer G, Oldt R III, Cohen Y, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003a;95:484–6.

    Article  CAS  PubMed  Google Scholar 

  • Singer G, Rebmann V, Chen YC, et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res. 2003b;9:4460–4.

    CAS  PubMed  Google Scholar 

  • Soslow RA, Han G, Park KJ, et al. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod Pathol. 2012;25:625–36.

    Article  CAS  PubMed  Google Scholar 

  • Southey MC, Goldgar DE, Winqvist R, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet. 2016;53:800–11.

    Article  CAS  PubMed  Google Scholar 

  • Stadlmann S, Gueth U, Reiser U, et al. Epithelial growth factor receptor status in primary and recurrent ovarian cancer. Mod Pathol. 2006;19:607–10.

    Article  CAS  PubMed  Google Scholar 

  • Sui L, Tokuda M, Ohno M, et al. The concurrent expression of p27(kip1) and cyclin D1 in epithelial ovarian tumors. Gynecol Oncol. 1999;73:202–9.

    Article  CAS  PubMed  Google Scholar 

  • Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res. 2020;13:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tafe LJ, Garg K, Chew I, et al. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol. 2010;23:781–9.

    Article  CAS  PubMed  Google Scholar 

  • Tafe LJ, Muller KE, Ananda G, et al. Molecular genetic analysis of ovarian Brenner tumors and associated mucinous epithelial neoplasms: high variant concordance and identification of mutually exclusive RAS driver mutations and MYC amplification. Am J Pathol. 2016;186:671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Mei L, Huang Y, et al. Three novel mutations of STK11 gene in Chinese patients with Peutz-Jeghers syndrome. BMC Med Genet. 2016;17:77.

    Article  PubMed  PubMed Central  Google Scholar 

  • The WHO Classification of Tumours Editorial Board. WHO classification of tumours: female genital tumours. 5th ed. Lyon: International Agency for Research on Cancer (IARC); 2020.

    Google Scholar 

  • Trametinib in treating patients with recurrent or progressive low-grade ovarian cancer or peritoneal cavity cancer. https://ClinicalTrials.gov/show/NCT02101788.

  • Tsuchiya A, Sakamoto M, Yasuda J, et al. Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol. 2003;163:2503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vang R, Levine DA, Soslow RA, et al. Molecular alterations of TP53 are a defining feature of ovarian high-grade serous carcinoma: a rereview of cases lacking TP53 mutations in the cancer genome atlas ovarian study. Int J Gynecol Pathol. 2016;35:48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nieuwenhuysen E, Busschaert P, Neven P, et al. The genetic landscape of 87 ovarian germ cell tumors. Gynecol Oncol. 2018;151:61–8.

    Article  PubMed  Google Scholar 

  • Vermeij J, Teugels E, Bourgain C, et al. Genomic activation of the EGFR and HER2/neu genes in a significant proportion of invasive epithelial ovarian cancers. BMC Cancer. 2008;8:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verri E, Guglielmini P, Puntoni M, et al. HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Clinical study. Oncology. 2005;68:154–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Horiuchi A, Imai T, et al. Expression of BRCA1 protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA1 gene. J Pathol. 2004;202:215–23.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou JY, Wu GS. Bim protein degradation contributes to cisplatin resistance. J Biol Chem. 2011;286:22384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Lou W, Di W, et al. Prognostic value of tumor PD-L1 expression combined with CD8(+) tumor infiltrating lymphocytes in high grade serous ovarian cancer. Int Immunopharmacol. 2017;52:7–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen J, Yang W, et al. The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors. Neoplasia. 2015;17:650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen WH, Reles A, Runnebaum IB, et al. p53 mutations and expression in ovarian cancers: correlation with overall survival. Int J Gynecol Pathol. 1999;18:29–41.

    Article  CAS  PubMed  Google Scholar 

  • Widschwendter M, Jiang G, Woods C, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res. 2004;64:4472–80.

    Article  CAS  PubMed  Google Scholar 

  • Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieser V, Gaugg I, Fleischer M, et al. BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer. Oncotarget. 2018;9:17501–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willner J, Wurz K, Allison KH, et al. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum Pathol. 2007;38:607–13.

    Article  CAS  PubMed  Google Scholar 

  • Witkowski L, Carrot-Zhang J, Albrecht S, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46:438–43.

    Article  CAS  PubMed  Google Scholar 

  • Woo JS, Apple SK, Sullivan PS, et al. Systematic assessment of HER2/neu in gynecologic neoplasms, an institutional experience. Diagn Pathol. 2016;11:102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu R, Zhai Y, Fearon ER, et al. Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res. 2001;61:8247–55.

    CAS  PubMed  Google Scholar 

  • Wu R, Hendrix-Lucas N, Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell. 2007;11:321–33.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Bi R, Xiao Y, et al. Low frequency of BRAF and KRAS mutations in Chinese patients with low-grade serous carcinoma of the ovary. Diagn Pathol. 2017;12:87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Tsuda H, Takano M, et al. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 2012;25:615–24.

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Kim SN, Shim SH, et al. Bilateral salpingectomy can reduce the risk of ovarian cancer in the general population: a meta-analysis. Eur J Cancer. 2016;55:38–46.

    Article  PubMed  Google Scholar 

  • Young RH, Welch WR, Dickersin GR, et al. Ovarian sex cord tumor with annular tubules: review of 74 cases including 27 with Peutz-Jeghers syndrome and four with adenoma malignum of the cervix. Cancer. 1982;50:1384–402.

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Bellone S, Lopez S, et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:12238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Wen H, Bi R, et al. Prognostic value of programmed death-ligand 1 (PD-L1) expression in ovarian clear cell carcinoma. J Gynecol Oncol. 2017;28:e77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kruti P. Maniar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finkelman, B.S., Maniar, K.P., Shih, IM. (2023). Molecular Pathology of Ovarian Tumors. In: Cheng, L., Netto, G.J., Eble, J.N. (eds) Molecular Surgical Pathology. Springer, Cham. https://doi.org/10.1007/978-3-031-35118-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35118-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35117-4

  • Online ISBN: 978-3-031-35118-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics