Skip to main content

Gut Microbiota and Diabetic Kidney Diseases

  • Reference work entry
  • First Online:
Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk

Part of the book series: Endocrinology ((ENDOCR))

  • 184 Accesses

Abstract

Diabetic kidney disease (DKD) is a well-known risk factor for cardiovascular morbidity and mortality, as well as the first cause of end-stage renal disease. The need for renal replacement therapy in the form of dialysis or kidney transplant at this stage still points to DKD as a major public health challenge worldwide.

The onset and progression of DKD are driven by a great number of molecular mechanisms, among them, the most characterized include: alterations of the cellular metabolism due to increased glucose uptake; renal hypoxia and ROS production with subsequent tissue inflammation and fibrosis; changes in the renal and systemic hemodynamics, and, importantly, dysbiosis of the gut microbiota.

There is growing evidence for a bidirectional microbiota-kidney interaction in the setting of DKD. Indeed, alterations within the gut microbiome composition encourage the expansion of microbial pathobionts and is associated with a significant increase in uremic solutes and inflammatory mediators that gradually intensify kidney damage, creating a vicious cycle in which dysbiosis and renal dysfunction are progressively worsened. Novel strategies aimed at targeting the intestinal microbiome in the setting of DKD have been suggested. Expanding our knowledge regarding the mechanisms through which the intestinal microbiota promotes renal damage in diabetes will be crucial in the clinical management of DKD as it could result in immediate applications in the daily approach to patients with DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barba C, Soulage CO, Caggiano G, Glorieux G, Fouque D, Koppe L. Effects of fecal microbiota transplantation on composition in mice with CKD. Toxins (Basel). 2020;12

    Google Scholar 

  • Bastos RMC, Simplicio-Filho A, Savio-Silva C, Oliveira LFV, Cruz GNF, Sousa EH, Noronha IL, Mangueira CLP, Quaglierini-Ribeiro H, Josefi-Rocha GR, Rangel EB. Fecal microbiota transplant in a pre-clinical model of type 2 diabetes mellitus, obesity and diabetic kidney disease. Int J Mol Sci. 2022;23

    Google Scholar 

  • Bohlouli J, Namjoo I, Borzoo-Isfahani M, Hojjati Kermani MA, Balouch Zehi Z, Moravejolahkami AR. Effect of probiotics on oxidative stress and inflammatory status in diabetic nephropathy: a systematic review and meta-analysis of clinical trials. Heliyon. 2021;7:e05925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  • Cai K, Ma Y, Cai F, Huang X, Xiao L, Zhong C, Ren P, Luo Q, Chen J, Han F. Changes of gut microbiota in diabetic nephropathy and its effect on the progression of kidney injury. Endocrine. 2022;76:294–303.

    Article  CAS  PubMed  Google Scholar 

  • Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol. 2012;20:385–91.

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Rodriguez E, Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Fernandez-Fernandez B, Kanbay M, Tejedor A, Lazaro A, Ruiz-Ortega M, Gonzalez-Parra E, Sanz AB, Ortiz A, Sanchez-Nino MD. Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins (Basel). 2018;10

    Google Scholar 

  • Cepas V, Collino M, Mayo JC, Sainz RM. Redox signaling and Advanced Glycation Endproducts (AGEs) in diet-related diseases. Antioxidants (Basel). 2020;9

    Google Scholar 

  • Conserva F, Gesualdo L, Papale M. A systems biology overview on human diabetic nephropathy: from genetic susceptibility to post-transcriptional and post-translational modifications. J Diabetes Res. 2016;2016:7934504.

    Article  PubMed  Google Scholar 

  • Conserva F, Barozzino M, Pesce F, Divella C, Oranger A, Papale M, Sallustio F, Simone S, Laviola L, Giorgino F, Gallone A, Pontrelli P, Gesualdo L. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of kidney fibrosis in diabetic nephropathy. Sci Rep. 2019;9:11357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N, Meyer T, Pollard KS, Sonnenburg JL, Fischbach MA. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe. 2016;20:709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Paolo S, Fiorentino M, De Nicola L, Reboldi G, Gesualdo L, Barutta F, Natali A, Penno G, Fioretto P, Pugliese G, Nephrology Italian Society of, and Society the Italian Diabetes. Indications for renal biopsy in patients with diabetes. Joint position statement of the Italian Society of Nephrology and the Italian Diabetes Society. Nutr Metab Cardiovasc Dis. 2020;30:2123–32.

    Article  PubMed  Google Scholar 

  • Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112:1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Liu J, Xue Y, Kong X, Lv C, Li Z, Huang Y, Wang B. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine. 2021;73:71–84.

    Article  CAS  PubMed  Google Scholar 

  • Edamatsu T, Fujieda A, Itoh Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS One. 2018;13:e0193342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorentino M, Bolignano D, Tesar V, Pisano A, Van Biesen W, D'Arrigo G, Tripepi G, Gesualdo L, Era-Edta Immunonephrology Working Group. Renal biopsy in 2015--from epidemiology to evidence-based indications. Am J Nephrol. 2016;43:1–19.

    Article  PubMed  Google Scholar 

  • Fiorentino M, Bolignano D, Tesar V, Pisano A, Biesen WV, Tripepi G, D’Arrigo G, Gesualdo L, Era-Edta Immunonephrology Working Group. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol Dial Transplant. 2017;32:97–110.

    CAS  PubMed  Google Scholar 

  • Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care. 2016;39(Suppl 2):S165–71.

    Article  CAS  PubMed  Google Scholar 

  • Gesualdo L, Di Paolo S. Renal lesions in patients with type 2 diabetes: a puzzle waiting to be solved. Nephrol Dial Transplant. 2015;30:155–7.

    Article  CAS  PubMed  Google Scholar 

  • Gooding KM, Lienczewski C, Papale M, Koivuviita N, Maziarz M, Dutius Andersson AM, Sharma K, Pontrelli P, Garcia Hernandez A, Bailey J, Tobin K, Saunavaara V, Zetterqvist A, Shelley D, Teh I, Ball C, Puppala S, Ibberson M, Karihaloo A, Metsarinne K, Banks RE, Gilmour PS, Mansfield M, Gilchrist M, de Zeeuw D, Heerspink HJL, Nuutila P, Kretzler M, Welberry Smith M, Gesualdo L, Andress D, Grenier N, Shore AC, Gomez MF, Sourbron S, B. EAt-DKD consortium. Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol. BMC Nephrol. 2020;21:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hapca S, Siddiqui MK, Kwan RSY, Lim M, Matthew S, Doney ASF, Pearson ER, Palmer CNA, Bell S, B. EAt-DKD Consortium. The relationship between AKI and CKD in patients with type 2 diabetes: an observational cohort study. J Am Soc Nephrol. 2021;32:138–50.

    Article  CAS  PubMed  Google Scholar 

  • He X, Sun J, Liu C, Yu X, Li H, Zhang W, Li Y, Geng Y, Wang Z. Compositional alterations of gut microbiota in patients with diabetic kidney disease and type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2022;15:755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZB, Lu J, Chen PP, Lu CC, Zhang JX, Li XQ, Yuan BY, Huang SJ, Ruan XZ, Liu BC, Ma KL. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics. 2020;10:2803–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Man Y, Gao C, Zhou L, Gu J, Xu H, Wan Q, Long Y, Chai L, Xu Y, Xu Y. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-kappaB signaling. Oxidative Med Cell Longev. 2020;2020:4074832.

    Article  Google Scholar 

  • Kang JY. The gastrointestinal tract in uremia. Dig Dis Sci. 1993;38:257–68.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Saigusa D, Kanemitsu Y, Matsumoto Y, Thanai P, Suzuki N, Mise K, Yamaguchi H, Nakamura T, Asaji K, Mukawa C, Tsukamoto H, Sato T, Oikawa Y, Iwasaki T, Oe Y, Tsukimi T, Fukuda NN, Ho HJ, Nanto-Hara F, Ogura J, Saito R, Nagao S, Ohsaki Y, Shimada S, Suzuki T, Toyohara T, Mishima E, Shima H, Akiyama Y, Akiyama Y, Ichijo M, Matsuhashi T, Matsuo A, Ogata Y, Yang CC, Suzuki C, Breeggemann MC, Heymann J, Shimizu M, Ogawa S, Takahashi N, Suzuki T, Owada Y, Kure S, Mano N, Soga T, Wada T, Kopp JB, Fukuda S, Hozawa A, Yamamoto M, Ito S, Wada J, Tomioka Y, Abe T. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019;10:1835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen AM, Peet A, Tillmann V, Poho P, Mattila I, Lahdesmaki H, Franzosa EA, Vaarala O, de Goffau M, Harmsen H, Ilonen J, Virtanen SM, Clish CB, Oresic M, Huttenhower C, Knip M, Xavier RJ, Diabimmune Study Group. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Watanabe K, Kimura I. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front Immunol. 2017;8:1882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, Ma J, Tan J, Macia L, Mackay CR, Chadban SJ, Wu H. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. J Am Soc Nephrol. 2020;31:1267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wei T, Liu S, Wang C, Zhao M, Feng Y, Ma L, Lu Y, Fu P, Liu J. Complement C5 activation promotes type 2 diabetic kidney disease via activating STAT3 pathway and disrupting the gut-kidney axis. J Cell Mol Med. 2021;25:960–74.

    Article  CAS  PubMed  Google Scholar 

  • Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, Monga G. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis. 2002;39:713–20.

    Article  PubMed  Google Scholar 

  • Mishima E, Abe T. Gut microbiota dynamics and uremic toxins. Toxins (Basel). 2022;14

    Google Scholar 

  • Mosterd CM, Kanbay M, van den Born BJH, van Raalte DH, Rampanelli E. Intestinal microbiota and diabetic kidney diseases: the role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Pract Res Clin Endocrinol Metab. 2021;35:101484.

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, Yoshida M. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. 2011;26:1094–8.

    Article  CAS  PubMed  Google Scholar 

  • Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld CM, Geisler C, Andersen MH, Odum N, Woetmann A. Butyrate and propionate inhibit antigen-specific CD8(+) T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci Rep. 2017;7:14516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Goergen CJ, HogenEsch H, Kim CH. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis. J Immunol. 2016;196:2388–400.

    Article  CAS  PubMed  Google Scholar 

  • Poesen R, Evenepoel P, de Loor H, Kuypers D, Augustijns P, Meijers B. Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin J Am Soc Nephrol. 2016;11:1136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, Forbes JM, Szeto CC, McWhinney BC, Ungerer JP, Campbell KL. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11:223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satchell SC. The glomerular endothelium emerges as a key player in diabetic nephropathy. Kidney Int. 2012;82:949–51.

    Article  PubMed  Google Scholar 

  • Schleicher ED, Weigert C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int Suppl. 2000;77:S13–8.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth KK, Orrick JA. Biochemistry, polyol or sorbitol pathways. Treasure Island: StatPearls; 2022.

    Google Scholar 

  • Szeto CC, Kwan BC, Chow KM, Lai KB, Chung KY, Leung CB, Li PK. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2008;3:431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao S, Li L, Li L, Liu Y, Ren Q, Shi M, Liu J, Jiang J, Ma H, Huang Z, Xia Z, Pan J, Wei T, Wang Y, Li P, Lan T, Tang X, Zeng X, Lei S, Tang H, Ma L, Fu P. Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetol. 2019;56:581–92.

    Article  PubMed  Google Scholar 

  • Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K, Noel LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA, Society Renal Pathology. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.

    Article  PubMed  Google Scholar 

  • Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25:1897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol. 2013;37:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Vlachou E, Ntikoudi A, Govina O, Lavdaniti M, Kotsalas N, Tsartsalis A, Dimitriadis G. Effects of probiotics on diabetic nephropathy: a systematic review. Curr Clin Pharmacol. 2020;15:234–42.

    PubMed  Google Scholar 

  • Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y, Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol. 2018;478:115–25.

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Shang J, Guo R, Zhang F, Zhang W, Zhang Y, Wu F, Ren H, Liu C, Xiao J, Zhao Z. The gut microbiome in differential diagnosis of diabetic kidney disease and membranous nephropathy. Ren Fail. 2020;42:1100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang Y, Zeng L, Chen G, Zhang L, Liu M, Sheng H, Hu X, Su J, Zhang D, Lu F, Liu X, Zhang L. The role of gut microbiota and microbiota-related serum metabolites in the progression of diabetic kidney disease. Front Pharmacol. 2021a;12:757508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021b;9:696542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wan Y, Zhou X, Zhang H, Zhao H, Ma L, Dong X, Yan M, Zhao T, Li P. Characteristics of serum metabolites and gut microbiota in diabetic kidney disease. Front Pharmacol. 2022;13:872988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng HJ, Guo J, Wang Q, Wang L, Wang Y, Zhang F, Huang WJ, Zhang W, Liu WJ, Wang Y. Probiotics, prebiotics, and synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;61:577–98.

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Dai Z, Chai L, Wu L, Li J, Guo W, Zhang J, Zhang Q, Xue C, Lin H, Luo Q, Cai K. The change of gut microbiota-derived short-chain fatty acids in diabetic kidney disease. J Clin Lab Anal. 2021;35:e24062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

PP and LG received funds from the PNRR-PE10 ON Foods: Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Pontrelli or Loreto Gesualdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stasi, A., Conserva, F., Cimmarusti, M.T., Caggiano, G., Pontrelli, P., Gesualdo, L. (2024). Gut Microbiota and Diabetic Kidney Diseases. In: Federici, M., Menghini, R. (eds) Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35064-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35064-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35063-4

  • Online ISBN: 978-3-031-35064-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics