Skip to main content

A Somewhat Comprehensive Critique of Experimental Modal Analysis

  • Conference paper
  • First Online:
Topics in Modal Analysis & Parameter Identification, Volume 9 (SEM 2023)

Abstract

Over the past 70 years, the US aerospace community has maintained a standard for verification and validation of experimentally determined, real structural dynamic modes and mathematical models based on mass-weighted orthogonality criteria. This standard fundamentally contradicts observable physical aspects associated with the mechanical behavior of structures. Specifically, (a) energy dissipation (damping) forces are most often concentrated in joints, rather than nearly uniformly distributed throughout the structure; (b) structural modes are mathematically complex, yet often approximately real except when successive modal frequencies are closely spaced; and (c) complex structural modes, while often are approximately real, do not strictly satisfy mass-weighted orthogonality criteria. A bottom-up approach, based on the Simultaneous Frequency Domain Technique (SFD-2018), employs left-hand eigenvectors to (1) isolate individual complex measured modes and (2) guarantee mathematical orthogonality of complex measured modes (completely independent of a theoretical mass matrix and model expectations). In addition, (3) complex modes deduced from virtually all experimental modal analysis techniques are classified in terms of a complex mode index parameter that indicates each mode’s level of “complexity,” and (4) conventional experimental mode orthogonality and experimental-to-theoretical mode cross-orthogonality metrics are adapted via replacement of the transform operator with the Hermitian operator permitting direct employment of complex experimental modes. A welcome surprise, due to review of a specific real experimental mode approximation extends the useful life of established US aerospace community standards for verification and validation of modal test data and correlation and reconciliation of modal test results and mathematical model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Load Analysis of Spacecraft and Payloads, NASA-STD-5002 (1996)

    Google Scholar 

  2. Independent Structural Loads Analysis. U.S. Air Force Space Command, SMC-S-004 (2008)

    Google Scholar 

  3. Kabe, A.M., Sako, B.H.: Structural Dynamics Fundamentals and Advanced Applications, vol. 1 & 2. Academic Press, London (2020)

    Google Scholar 

  4. Coppolino, R.N.: The Integrated Test Analysis Process for Structural Dynamic Systems. Morgan & Claypool Publishers, San Rafael (2020)

    Book  Google Scholar 

  5. Hunt, D., Adams, W., Bock, T.: Dynamic analysis of structures with friction forces at sliding joints. J. Spacecr. Rockets. 21(2) (1984)

    Google Scholar 

  6. Henkel, E.E., Misel, J.E., Frederick, D.H.: A methodology to include static and kinetic friction effects in space shuttle payload transient loads analysis. In: Shuttle Environment and Operations Meeting. AIAA, Washington, DC (1983)

    Google Scholar 

  7. A friction methodology for space shuttle/payload transient loads analysis. In: Proc. Shuttle Payload Dynamics Loads Prediction Workshop, JPL-D-1347, vol. 2 (1984)

    Google Scholar 

  8. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3, 380–381 (1965)

    Article  Google Scholar 

  9. Coppolino, R.: Automated response DOF selection for mapping of experimental normal modes. In: IMAC XVI (1998)

    Google Scholar 

  10. Tuttle, R.E., Cole, T.R., Lollock, J.A.: An automated method for identification of efficient measurement degrees-of-freedom for modal survey testing. In: 46th AIAA/ASME/ASCE/AHS/ASC SDM Conference (2005)

    Google Scholar 

  11. Bendat, J.S., Piersol, A.G.: Random Data Analysis and Measurement Procedures, 4th edn. Wiley, Hoboken (2010)

    Book  MATH  Google Scholar 

  12. Bendat, J.S.: Nonlinear Systems Techniques and Applications, 2nd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Bishop, R.E.D., Gladwell, G.M.L.: An investigation into the theory of resonance testing. Philos. Trans. Royal Soc. Lond. Ser. A. 225, A-1055 (1963)

    Google Scholar 

  14. Brown, D.L., Allemang, R.J.: The modern era of experimental modal analysis. Sound Vib. Mag., 85 (2007)

    Google Scholar 

  15. Allemang, R.J., Brown, D.L.: Chapter 21: experimental modal analysis. In: Piersol, A.G., Paez, T.L. (eds.) Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill, New York. (2010)

    Google Scholar 

  16. Coppolino, R.: Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models, vol. 1, NASA CR-2018-219800 (2018)

    Google Scholar 

  17. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Metropolis, N., Ulam, S.: The Monte Carlo Method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

  19. Zimmerman, D.C., Jorgensen, S.S.F.: Parallel multispecies genetic algorithm for physics and parameter estimation in structural dynamics. AIAA J. 43, 2224 (2005)

    Article  Google Scholar 

  20. Rayleigh, J.W.S.: The Theory of Sound, 1st American edn. Dover Publications, New York (1945)

    Google Scholar 

  21. Caughey, T.K., O’Kelly, M.E.J.: Classical normal modes in damped linear dynamic systems. ASME J. Appl. Mech. 32, 583–588 (1965)

    Article  MathSciNet  Google Scholar 

  22. Cremer, L., Heckl, M., Ungar, E.: Structure Borne Sound. Springer-Verlag, New York (1973)

    Book  Google Scholar 

  23. Coppolino, R.N.: Structural dynamics modeling–tales of sin and redemption. Sound Vib. Mag. 50(1), 7–11 (2016)

    Google Scholar 

  24. Mayes, R., Klenke, S.: The SMAC modal parameter extraction package. In: IMAC XVII (1999)

    Google Scholar 

  25. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, New York (1965)

    MATH  Google Scholar 

  26. Coppolino, R.N.: The integrated test-analysis process (2020 challenges). In: IMAC XXXVIII (2020)

    Google Scholar 

  27. Coppolino, R.N.: Roadmap to a highly improved modal test process. In: IMACXXXVIII (2020)

    Google Scholar 

  28. Ibrahim, S.R., Mikulcik, E.C.: A method for the direct identification of vibration parameters from the free response. Shock Vib. Bull. 47, 183–196 (1977)

    Google Scholar 

  29. Juang, J., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8, 620–627 (1985)

    Article  MATH  Google Scholar 

  30. Brincker, R., Ventura, C.E.: Introduction to Operational Modal Analysis. Wiley, Chichester (2015)

    Book  MATH  Google Scholar 

  31. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller, K.: Complex linear least squares. SIAM Rev. 15(4), 706–726 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coppolino, R.N. (2024). A Somewhat Comprehensive Critique of Experimental Modal Analysis. In: Dilworth, B.J., Marinone, T., Mains, M. (eds) Topics in Modal Analysis & Parameter Identification, Volume 9. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-34942-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34942-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34941-6

  • Online ISBN: 978-3-031-34942-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics