Skip to main content

Generation of Patient-Specific Structured Hexahedral Mesh of Aortic Aneurysm Wall

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine (MICCAI 2021)

Abstract

Abdominal aortic aneurysm (AAA) is an enlargement in the lower part of the main artery “Aorta” by 1.5 times its normal diameter. AAA can cause death if rupture occurs. Elective surgeries are recommended to prevent rupture based on measurement of AAA diameter and diameter growth rate. Reliability of these geometric parameters to predict the AAA rupture risk has been questioned, and biomechanical assessment has been proposed to distinguish between patients with high and low risk of AAA rupture. Stress in aneurysm wall is the main variable of interest in such assessment. Most studies use finite element method to compute AAA stress. This requires discretising patient-specific geometry (aneurysm wall and intraluminal thrombus ILT) into finite elements/meshes. Tetrahedral elements are most commonly used as they can be generated in seemingly automated and effortless way. In practice, however, due to complex aneurysm geometry, the process tends to require time-consuming mesh optimisation to ensure sufficiently high quality of tetrahedral elements. Furthermore, ensuring solution convergence requires large number of tetrahedral elements, which leads to relatively long computation times. In this study, we focus on generation of hexahedral meshes as they are known to provide converged solution for smaller number of elements than tetrahedral meshes. We limit our investigation to already existing algorithms and software packages for mesh generation. Generation of hexahedral meshes for continua with complex/irregular geometry, such as aneurysms, requires analyst interaction. We propose a procedure for generating high-quality patient-specific hexahedral discretisation of aneurysm wall using the algorithms available in commercial software package for mesh generation. We demonstrate, for the actual aneurysms, that the procedure facilitates patient-specific mesh generation within timeframe consistent with clinical workflow while requiring only limited input from the analyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston, K.W., Rutherford, R.B., Tilson, M.D., Shah, D.M., Hollier, L., Stanley, J.C.: Suggested standards for reporting on arterial aneurysms. J. Vasc. Surg. 13(3), 452–458 (1991)

    Article  Google Scholar 

  2. Wanhainen, A., Verzini, F., Van Herzeele, I., Allaire, E., Bown, M., Cohnert, T., Dick, F., van Herwaarden, J., Karkos, C., Koelemay, M., Kölbel, T., Loftus, I., Mani, K., Melissano, G., Powell, J., Szeberin, Z., Committee, E.G., de Borst, G.J., Chakfe, N., Debus, S., Hinchliffe, R., Kakkos, S., Koncar, I., Kolh, P., Lindholt, J.S., de Vega, M., Vermassen, F., Document, R., Björck, M., Cheng, S., Dalman, R., Davidovic, L., Donas, K., Earnshaw, J., Eckstein, H.-H., Golledge, J., Haulon, S., Mastracci, T., Naylor, R., Ricco, J.-B., Verhagen, H.: Editor’s choice – European society for vascular surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Euro. J. Vascul. Endovascul. Surg. 57(1), 8–93 (2019)

    Article  Google Scholar 

  3. Martufi, G., Christian Gasser, T.: Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. J. Biomech. Eng. 135(2) (2013)

    Google Scholar 

  4. Upchurch, G.R., Schaub, T.A.: Abdominal aortic aneurysm. Am. Acad. Family Phys. 73(7), 1198–1204 (2006)

    Google Scholar 

  5. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. The Lancet 385(9963), 117–171 (2015)

    Google Scholar 

  6. Lancet-2017: The lancet, global burden of disease. https://www.thelancet.com/gbd/gbd-compare-visualisation

  7. Scott, R., Group, M.A.S.S.: The multicentre aneurysm screening study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. The Lancet 360(9345), 1531–1539 (2002)

    Google Scholar 

  8. Powell, J.T., Brady, A.R.: Detection, management, and prospects for the medical treatment of small abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24(2), 241–245 (2004)

    Article  Google Scholar 

  9. Vande Geest, J., Di Martino, E., Bohra, A., Makaroun, M.S., Vorp, D.A.: A Biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085, 11–21 (2006)

    Article  Google Scholar 

  10. Gasser, T.C., Auer, M., Labruto, F., Swedenborg, J., Roy, J.: Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40(2), 176–185 (2010)

    Article  Google Scholar 

  11. Gasser, T.C., Nchimi, A., Swedenborg, J., Roy, J., Sakalihasan, N., Böckler, D., Hyhlik-Dürr, A.: A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur. J. Vasc. Endovasc. Surg. 47(3), 288–295 (2014)

    Article  Google Scholar 

  12. Polzer, S., Gasser, T.C.: Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J. R. Soc. Interface 12(113), 20150852 (2015)

    Article  Google Scholar 

  13. Joldes, G.R., Miller, K., Wittek, A., Forsythe, R.O., Newby, D.E., Doyle, B.J.: BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci. Rep. 7(1), 4641 (2017)

    Article  Google Scholar 

  14. Raut, S.S., Liu, P., Finol, E.A.: An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling. J. Biomech. 48(10), 1972–1981 (2015)

    Article  Google Scholar 

  15. Miller, K., Mufty, H., Catlin, A., Rogers, C., Saunders, B., Sciarrone, R., Fourneau, I., Meuris, B., Tavner, A., Joldes, G.R., Wittek, A.: Is there a relationship between stress in walls of abdominal aortic aneurysm and symptoms? J. Surg. Res. 252, 37–46 (2020)

    Article  Google Scholar 

  16. Zhang, Y.J.: Chapter 6: image-based quadrilateral and hexahedral meshing. In: Geometric Modeling and Mesh Generation from Scanned Images, pp. 193–228. Chapman and Hall/CRC, New York (2018)

    Google Scholar 

  17. Wittek, A., Alkhatib, F., Vitásek, R., Polzer, S., Miller, K.: On stress in abdominal aortic aneurysm: linear versus non-linear analysis and aneurysm rupture risk. Int. J. Numerical Meth. Biomed. Eng. 38(2), e3554 (2022)

    Article  Google Scholar 

  18. De Santis, G., Mortier, P., De Beule, M., Segers, P., Verdonck, P., Verhegghe, B.: Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48(4), 371–380 (2010)

    Article  Google Scholar 

  19. Trachet, B., Renard, M., De Santis, G., Staelens, S., De Backer, J., Antiga, L., Loeys, B., Segers, P.: An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE −/− mice. Ann. Biomed. Eng. 39(9), 2430–2444 (2011)

    Article  Google Scholar 

  20. Marchandise, E., Geuzaine, C., Remacle, J.F.: Cardiovascular and lung mesh generation based on centerlines. Int. J. Numer. Meth. Biomed. Eng. 29(6), 665–682 (2013)

    Article  Google Scholar 

  21. Tarjuelo-Gutierrez, J., Rodriguez-Vila, B., Pierce, D.M., Fastl, T.E., Verbrugghe, P., Fourneau, I., Maleux, G., Herijgers, P., Holzapfel, G.A., Gomez, E.J.: High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi. Med. Biol. Eng. Compu. 52(2), 159–168 (2014)

    Article  Google Scholar 

  22. Joldes, G.R., Noble, C., Polzer, S., Taylor, Z.A., Wittek, A., Miller, K.: A simple method of incorporating the effect of the uniform stress hypothesis in arterial wall stress computations. Acta Bioeng. Biomech. 20(3), 59–67 (2018)

    Google Scholar 

  23. Mayr, M., Wall, W.A., Gee, M.W.: Adaptive time stepping for fluid-structure interaction solvers. Finite Elem. Anal. Des. 141, 55–69 (2018)

    Article  MathSciNet  Google Scholar 

  24. Auer, M., Gasser, T.C.: Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans. Med. Imaging 29(4), 1022–1028 (2010)

    Article  Google Scholar 

  25. Polzer, S., Bursa, J., Gasser, T.C., Staffa, R., Vlachovsky, R.: A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann. Biomed. Eng. 41(7), 1516–1527 (2013)

    Article  Google Scholar 

  26. Zhang, Y., Bajaj, C.: Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput. Meth. Appl. Mech. Eng. 195(9–12), 942–960 (2006)

    Article  MATH  Google Scholar 

  27. Maier, A., Gee, M.W., Reeps, C., Pongratz, J., Eckstein, H.H., Wall, W.A.: A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38(10), 3124–3134 (2010)

    Article  Google Scholar 

  28. Ito, Y., Shih, A.M., Soni, B.K.: Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int. J. Numer. Meth. Eng. 77(13), 1809–1833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imag. 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  30. Huynh, A.T., Miller, K.: Towards accurate measurement of abdominal aortic aneurysm wall thickness from CT and MRI. In: Computational Biomechanics for Medicine - Towards Translation and Better Patient Outcomes. Springer International Publishing (2022)

    Google Scholar 

  31. Bern, M., Plassmann, P., Sack, J.R., Urrutia, J.: Chapter 6 - mesh generation. In: Handbook of Computational Geometry, pp. 291–332. North-Holland, Amsterdam (2000)

    Google Scholar 

  32. Yang, K.H.: Chapter 3 - isoparametric formulation and mesh quality. In: Yang, K.-H. (ed.) Basic Finite Element Method as Applied to Injury Biomechanics, pp. 111–149. Academic Press (2018)

    Chapter  Google Scholar 

  33. AltairEngineering: Altair HyperMesh. https://2022.help.altair.com/2022.1/hwdesktop/hm/topics/chapter_heads/tutorials_r.htm (2022)

  34. Joldes, G.R., Miller, K., Wittek, A., Doyle, B.: A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58, 139–148 (2016)

    Article  Google Scholar 

  35. Abaqus: Abaqus 6.14 Documentation. 2018. Dassault Systèmes Simulia Corp. https://www.3ds.com/support/documentation/ (2018)

  36. Lu, J., Zhou, X., Raghavan, M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3), 693–696 (2007)

    Article  Google Scholar 

  37. Inzoli, F., Boschetti, F., Zappa, M., Longo, T., Fumero, R.: Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 7(6), 667–674 (1993)

    Article  Google Scholar 

  38. Vorp, D.A., Mandarino, W.A., Webster, M.W., Gorcsan, J.: Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc. Surg. 4(6), 732–739 (1996)

    Article  Google Scholar 

  39. Speelman, L., Bosboom, E.M.H., Schurink, G.W.H., Hellenthal, F.A.M.V.I., Buth, J., Breeuwer, M., Jacobs, M.J., van de Vosse, F.N.: Patient-specific AAA wall stress analysis: 99-percentile versus peak stress. Eur. J. Vasc. Endovasc. Surg. 36(6), 668–676 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding of the Australian Government through the National Health and Medical Research Council NHMRC Ideas Grant, Ideas grant no. APP2001689. This research was carried out while the first author F. A. was in receipt of an “Australian Government Research Training Program Scholarship at The University of Western Australia”. The first author acknowledges Ms. Kiara Beinart of the University of Western Australia’s Intelligent System for Medicine Laboratory for her contribution in obtaining the ethics approval and support of Ms. Giuliana D'Aulerio of the University of Western Australia’s Medical School Division of Surgery. Contributions of Christopher Wood and Jane Polce, radiology technicians at Medical Imaging Department, Fiona Stanley Hospital (Western Australia) in patient (abdominal aortic aneurysm) CT image acquisition are gratefully acknowledged. We also thank Fiona Stanley Hospital, Perth, Western Australia, for providing the patient CT images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Alkhatib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alkhatib, F., Bourantas, G.C., Wittek, A., Miller, K. (2023). Generation of Patient-Specific Structured Hexahedral Mesh of Aortic Aneurysm Wall. In: Nash, M.P., Wittek, A., Nielsen, P.M.F., Kobielarz, M., Babu, A.R., Miller, K. (eds) Computational Biomechanics for Medicine. MICCAI 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-34906-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34906-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34905-8

  • Online ISBN: 978-3-031-34906-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics