Skip to main content

Disturbance Observer-Based Fast Fixed-Time Nonsingular Terminal Sliding-Mode Formation Control for Autonomous Underwater Vehicles

  • Conference paper
  • First Online:
Sensor Systems and Software (S-Cube 2022)

Abstract

In this paper, a disturbance observer-based fixed-time formation control method is studied for autonomous underwater vehicles with actuator faults, model uncertainties and external disturbances. Firstly, the leader-follower strategy is combined with the artificial potential field method to obtain the formation configuration. Then, a fast fixed-time disturbance observer is designed to deal with unknown composite disturbances. Further, based on the disturbance observer and fixed-time nonsingular terminal sliding-mode surface, a novel fast fixed-time formation control method is proposed. Finally, simulation results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, N., Zhang, Y., Ahn, C., Xu, Q.: Autonomous pilot of unmanned surface vehicles: Bridging path planning and tracking. IEEE Trans. Veh. Technol. 71(3), 2358–2374 (2022)

    Article  Google Scholar 

  2. Gao, L., Qin, H., Li, P.: Disturbance observer-based finite-time exact bottom-following control for a BUV with input saturation. Ocean Eng. 266, 112650 (2022)

    Article  Google Scholar 

  3. Wang, N., Er, M., Sun, J., Liu, Y.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  4. Cui, R., Shuzhi, S., Bernard, V., Yoo, S.: Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17), 1491–1502 (2010)

    Article  Google Scholar 

  5. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  6. Pashna, M., Yusof, R., Ismail, Z., Namerikawa, T., Yazdani, S.: Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach. Ocean Eng. 207, 107238 (2020)

    Article  Google Scholar 

  7. Do, K.: Formation control of multiple elliptical agents with limited sensing ranges. Automatica 48(7), 1330–1338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Peng, Z., Wang, J., Wang, D.: Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans. Industr. Electr. 64, 3831–3839 (2017)

    Google Scholar 

  9. Xu, J.: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, T., Xue, K., Wang, P.: Leader-follower formation control of USVs using APF-based adaptive fuzzy logic nonsingular terminal sliding mode control method. J. Mech. Sci. Technol. 36, 1–12 (2022). https://doi.org/10.1007/s12206-022-0336-y

  11. Wang, N., Ahn, C.: Coordinated trajectory tracking control of a marine aerial-surface heterogeneous system. IEEE/ASME Trans. Mechatron. 26(6), 3198–3210 (2021)

    Article  Google Scholar 

  12. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, N., Karimi, H., Li, H., Su, S.: Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach. IEEE/ASME Trans. Mechatron. 24(3), 1064–1074 (2019)

    Article  Google Scholar 

  14. Chen, M., Shi, P., Lim, C.: Robust constrained control for MIMO nonlinear systems based on disturbance observer. IEEE Trans. Autom. Control 60(12), 3281–3286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, N., Er, M.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015)

    Article  Google Scholar 

  16. Qiao, L., Bowen, Y., Wu, D., Zhang, W.: Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles. Ocean Eng. 134, 157–172 (2017)

    Article  Google Scholar 

  17. Qiao, L., Zhang, W.: Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles. IEEE J. Oceanic Eng. 44(2), 363–385 (2019)

    Article  Google Scholar 

  18. Qiao, L., Zhang, W.: Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans. Industr. Inform. 16(2), 1248–1258 (2020)

    Article  Google Scholar 

  19. Wang, N., Su, S.: Finite-time unknown observer based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Trans. Control Syst. Technol. 29(2), 794–803 (2021)

    Article  Google Scholar 

  20. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Tnunay, H., Zuo, Z., Lennox, B., Ding, Z.: Fixed-time formation control of multirobot systems: design and experiments. IEEE Trans. Industr. Electron. 66(8), 6292–6301 (2019)

    Article  Google Scholar 

  22. Wang, N., Er, M.: Direct Adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  23. Du, H., Wen, G., Wu, D., Cheng, Y., Lü, J.: Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica 113, 108797 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, N., Gao, Y., Zhang, X.: Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5456–5467 (2021)

    Article  MathSciNet  Google Scholar 

  25. Van, M.: An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer. ISA Trans. 90, 30–40 (2019)

    Article  Google Scholar 

  26. Weng, Y., Wang, N.: Finite-time observer-based model-free time-varying sliding-mode control of disturbed surface vessels. Ocean Eng. 251, 110866 (2022)

    Article  Google Scholar 

  27. Wang, N., Qian, C., Sun, J., Liu, Y.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  28. Lee, J., Chang, P., Jin, M.: Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans. Industr. Electron. 64(8), 6796–6804 (2017)

    Article  Google Scholar 

  29. Weng, Y., Wang, N., Carlos, G.: Data-driven sideslip observer-based adaptive sliding-mode path-following control of underactuated marine vessels. Ocean Eng. 197, 106910 (2020)

    Article  Google Scholar 

  30. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Industr. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  31. Kim, J., Joe, H., Yu, S., Lee, J., Kim, M.: Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Industr. Electron. 63(2), 1052–1061 (2016)

    Article  Google Scholar 

  32. Wang, N., Gao, Y., Zhao, H., Ahn, C.: Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3034–3045 (2021)

    Article  MathSciNet  Google Scholar 

  33. Guo, G., Zhang, P.: Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer. IEEE Trans. Veh. Technol. 69(1), 302–316 (2020)

    Article  Google Scholar 

  34. Wu, Y., Wang, Z., Huang, Z.: Distributed fault detection for nonlinear multi-agent systems under fixed-time observer. J. Franklin Inst. 356(13), 7515–7532 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cao, L., Xiao, B., Golestani, M., Ran, D.: Faster fixed-time control of flexible spacecraft attitude stabilization. IEEE Trans. Industr. Inform. 16(2), 1281–1290 (2020)

    Article  Google Scholar 

  36. Do, K., Pan, J.: Global robust adaptive path following of underactuated ships. Automatica 42(10), 1713–1722 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshuai Si .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, H., Si, J., Gao, L. (2023). Disturbance Observer-Based Fast Fixed-Time Nonsingular Terminal Sliding-Mode Formation Control for Autonomous Underwater Vehicles. In: Karimi , H.R., Wang, N. (eds) Sensor Systems and Software. S-Cube 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 487. Springer, Cham. https://doi.org/10.1007/978-3-031-34899-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34899-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34898-3

  • Online ISBN: 978-3-031-34899-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics